

A Verified Runtime
for a

 Verified Theorem Prover

Magnus Myreen
University of Cambridge, UK

Jared Davis
Centaur Technology, USA

This work is published in ITP '11
Slides for ACL2 '11

Two Projects Meet

Milawa
Self-verifying theorem prover

Jared Davis, UT Austin, 2009

wikipedia

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Theorem Prover
2000 functions, 100,000 lines**

(Defined in the Logic)

A Self-Verifying Theorem Prover

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Theorem Prover
2000 functions, 100,000 lines**

(Defined in the Logic)

Bootstrapping Proofs
13,000 theorems, 8 GB on disk

“The theorem prover can only
prove formulas that the proof

checker accepts.”

A Self-Verifying Theorem Prover

Finds, Writes (“ahead of time”)

Command Loop (Lisp Program)
165 functions, 2000 lines incl. PC

Define a recursive function
Define a Skolem function
Prove a theorem
Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Theorem Prover
2000 functions, 100,000 lines**

(Defined in the Logic)

Bootstrapping Proofs
13,000 theorems, 8 GB on disk

“The theorem prover can only
prove formulas that the proof

checker accepts.”

A Self-Verifying Theorem Prover

Finds, Writes (“ahead of time”)

Check
16 hrs

(Verified) Theorem Prover

Command Loop (Lisp Program)
165 functions, 2000 lines incl. PC

Define a recursive function
Define a Skolem function
Prove a theorem
Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Theorem Prover
2000 functions, 100,000 lines**

(Defined in the Logic)

Bootstrapping Proofs
13,000 theorems, 8 GB on disk

“The theorem prover can only
prove formulas that the proof

checker accepts.”

A Self-Verifying Theorem Prover

Finds, Writes (“ahead of time”)

Check

Becomes

16 hrs

Command Loop Program

Proof Checker

Common Lisp Runtime (CCL, GCL, ...)

Operating System (Linux, Mac, ...)

Hardware (Intel, AMD, ...)

The Soundness Story

Fundamentally have to trust
Use multiple systems, at least

Practically have to trust
(no verified options)

Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

The program is short
Social proof, for now

Two Projects Meet

Milawa
Self-verifying theorem prover

Jared Davis, UT Austin, 2009

verified LISP on
x86, ARM, PowerPC

Magnus Myreen, Cambridge, 2008

wikipedia

Command Loop Program

Proof Checker

Common Lisp Runtime (CCL, GCL, ...)

Operating System (Linux, Mac, ...)

Hardware (Intel, AMD, ...)

So can we do this?

Practically have to trust
(no verified options)
Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

The program is short
Social proof, for now

verified LISP on
x86, ARM, PowerPC

Fundamentally have to trust
Use multiple systems, at least

Well, no.

verified LISP on
x86, ARM, PowerPC

Bootstrapping Proofs
½ billion unique conses

16 hours on CCL
8 GB on disk

Interpreted, slow
32-bit, memory limited

Magnus set out to develop Jitawa, a new Lisp
runtime for Milawa.

bluebison.net

What does Milawa need?

Theorem Prover
First-order, recursive functions
Naturals, symbols, conses

12 Primitive Functions
cons car cdr consp
+ - < natp
symbolp symbol-<
if equal

11 Macros
and or list cond
let let*
first … fifth

Command Loop
Destructive updates
Hash tables
File reading
Timing, status messages
Checkpointing
Function compilation
Dynamic function calls
Runtime errors

I/O Requirements
½ billion unique conses

8 GB on disk
Abbreviations are critical

What does Milawa really need?

Theorem Prover
First-order, recursive functions
Naturals, symbols, conses

12 Primitive Functions
cons car cdr consp
+ - < natp
symbolp symbol-<
if equal

11 Macros
and or list cond
let let*
first … fifth

Command Loop
Destructive updates
Hash tables
File reading
Timing, status messages
Checkpointing
Function compilation
Dynamic function calls
Runtime errors

I/O Requirements
½ billion unique conses

8 GB on disk 4 GB input file
Abbreviations are critical

Jitawa – A Scalable, Verified Lisp

Verified Core
7500 lines of verified x86 machine code

Just-in-time (JIT) compiler to 64-bit x86
Copying garbage collector
Up to 231 conses (16 GB), big stacks
Efficient parser, with #1= style abbreviations
Graceful exit in all circumstances
Calls C routines for I/O

Unverified C Wrapper
200 lines (with #if debug)

Parse command line
Allocate memory

Initialize IO function pointers
Invoke verified core

read_line
print_string
report_error

Compare trusting this to an ordinary Lisp implementation

Magnus Myreen

Jitawa – A Scalable, Verified Lisp

Verified Core
7500 lines of verified x86 machine code

Just-in-time (JIT) compiler to 64-bit x86
Copying garbage collector
Up to 231 conses (16 GB), big stacks
Efficient parser, with #1= style abbreviations
Graceful exit in all circumstances
Calls C routines for I/O

Unverified C Wrapper
200 lines (with #if debug)

Parse command line
Allocate memory

Initialize IO function pointers
Invoke verified core

read_line
print_string
report_error

Magnus Myreen

> '3
3
> (cons '5 '(6 7))
(5 6 7)
> (define 'increment '(n) '(+ n '1))
NIL
> (increment '5)
6

> '3
3
> (cons '5 '(6 7))
(5 6 7)
> (define 'increment '(n) '(+ n '1))
NIL
> (increment '5)
6

Implements an ordinary read-eval-print loop!

How is it Verified?

Jitawa Specification
400 lines of HOL

Parsing, Evaluation, Printing

Machine Code

X86-64 Model
(in HOL)

Not a full x86 model,
Just the relevant instructions

Proof producing synthesis

Compiler, GC, Parsing, Printing
Algorithms Defined in HOL

HOL Proof
Effort

Magnus Myreen

wikipedia

Testing+
flikr:vext01

HOL Proof

Dot (Sym “print”) (Val 3)

Jitawa Specification (400 lines of HOL)

“(print 3) (g 5) ...”

(g x) = x
(h x) = (+ x 1)

Current State

“ (g 5) ...”

App (Fun “print”)
 (Const (Val 3))

sexp

rest

“>”
(Sym “nil”)

EV (g x) = x
(h x) = (+ x 1)

“>3”

Out

Defs

In

term

ans

“>3
 nil”

“ (g 5) ...”

Next Stateout'

out''

defs'

in'

Magnus Myreen

Command Loop Program

Proof Checker

Jitawa
Verified Core

Operating System (Linux, Mac, ...)

Hardware (Intel, AMD, ...)

The New Soundness Story

Fundamentally have to trust
Use multiple systems, at least

Practically have to trust
(no verified options)
Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

The program is short
Social proof, for now

C
Verified Down to the
Machine Code in HOL4

Command Loop Program

Proof Checker

Jitawa
Verified Core

Operating System (Linux, Mac, ...)

Hardware (Intel, AMD, ...)

Future Work

Fundamentally have to trust
Use multiple systems, at least

Practically have to trust
(no verified options)
Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

Mechanize this in HOL4,
Connect it to the Runtime!

C
Verified Down to the
Machine Code in HOL4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

