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Abstract—In recent years, leading microprocessor companies
have made huge investments to improve the reliability of their
products. Besides expanding their validation and CAD tools
teams, they have incorporated formal verification methods into
their design flows. Formal verification (FV) engineers require
extensive training, and FV tools from CAD vendors are expensive.
At first glance, it may seem that FV teams are not affordable
by smaller companies. We have not found this to be true. This
paper describes the formal verification framework we have built
on top of publicly-available tools. This framework gives us the
flexibility to work on myriad different problems that occur in
microprocessor design.

I. INTRODUCTION

With the increasing complexity of microprocessors, the
design-process bottleneck has shifted from the design to its
validation. Pre- and post-silicon validation teams continue to
grow relative to the size of the design teams, and more and
more companies are embracing formal methods as a com-
plement to traditional, simulation-based validation. However,
formal verification is still exotic and commercial FV tools
remain costly. Even with a site license for a large organization,
leasing each FV tool might cost over $100,000 per seat per
year, and even with conservative use, many licenses may
be needed to cover the needs of the designers. A different
approach is to hire FV experts, generally PhD-level engineers,
that can build in-house FV tools. Both solutions are generally
too expensive for small or medium-sized companies. However,
as we describe in this paper, there is a way for a company
of any size to take advantage of formal verification. With a
handful of FV engineers and publicly available software, FV
tools can be developed and deployed.

The verification framework described in this paper is in
daily use at Centaur Technology—a foundry-less company
that designs the Via Nano, a low-power, high-performance,
fully X86-compatible microprocessor. Centaur has about one
hundred employees and tens of contractors, and carries out
all phases of a fully-custom design process, including post-
silicon system validation. Four years ago, the founders of the
company decided to start a FV pilot project and challenged two
of us to formally verify the Nano’s microcode implementation
of floating-point division. This was done successfully with the
ACL2 [1], [2] theorem prover.

Centaur responded with an even more challenging prob-
lem: the verification of the Register-Transfer Level (RTL)
implementation of their floating-point addition (FADD) and
subtraction hardware. During the verification of the floating-
point addition/subtraction hardware, a bug was discovered that
FV experts dream about; this bug only occurs when performing
floating-point addition/subtraction with extended precision for
exactly one pair of numbers (modulo commutativity). This
problem would be practically impossible to uncover by sim-
ulation. This showed a clear advantage of formal methods
as the proof can be run in under one hour while the time
required for a full simulation is not practical. The FADD unit
also implements integer-to-floating-point conversions, floating-
point-to-integer conversions, and many media and logical
instructions. Later, we went on to verify almost hundred of
these data-manipulation instructions [3], [4].

After this experience, the company decided to create a small
FV team that today counts for three regular employees and
several external consultants. Even though the absolute size of
our FV team is small, to the best of our knowledge Centaur’s
relative investment in FV is larger than at any other company.

Our goal is to find efficient ways to help designers to
achieve their goals. We try to focus on problems that provide
relatively large returns on small investments. We have been
primarily concerned with the functional correctness of the RTL
and transistor-level designs. Our efforts include equivalence-
checking of the design models at different levels of abstraction,
property-checking, static analysis, consistency checking, and
a variety of derived problems. Sometimes we are only able to
provide a partial solution, either because of the time pressure,
or because of the character or scale of the problem.

We make heavy use of open source software. A key part of
our framework is the ACL2 theorem prover. ACL2 implements
a mathematical logic which is also a functional subset of
Common Lisp. We use the ACL2 language to describe circuit
models, and its associated theorem prover to prove properties
about them. In addition, because ACL2 is a programming
language, we use it to write our own verification tools, specify
their correctness and prove them correct. This extensibility is
one of the most valuable features of ACL2. We can modify
existing tools and tailor them for the needs of the company.
The use of ACL2 for design verification is nothing new [5],
but our development of tools extending ACL2 for hardware



validation is extensive.
ACL2 is a trustworthy tool. It has been hardened by many

groups and individuals in academia and industry for more than
a decade, and it won the ACM Software System Award in
2005. Because of this quality, we generally start by trying to
carry out proofs in ACL2 alone. When this does not suffice,
we may appeal to special-purpose tools outside ACL2, which
generally provide more verification capacity for particular
problems. Sometimes these tools can emit results that can be
verified by ACL2, e.g., the Berkeley ZZ SAT-solver [6] can
be set to emit a proof that we can check. For other tools, e.g.
ABC [7], we are forced to trust the results. In such cases, we
tag the results so it is clear which proofs rely on the correctness
of these external tools.

In this paper, we describe our framework and its relation
to the design flow (Section II). Then we give examples
of different validation problems that occur in the process
of designing a microprocessor, and describe some of our
solutions (Section III). We have made large improvements
in the robustness and capacity of our tools since we started
to use them at Centaur. We conclude by summarizing these
improvements, new features of our system, and our future
plans (Section IV).

II. METHODOLOGY AND FRAMEWORK

All of the tools in our verification framework are tied
together in the ACL2 system. Some of these components
are shown in Figure 1. Many of our tools (e.g., our Verilog
Translator, BDD library, and symbolic simulators) are written
directly as ACL2 programs. We also have ACL2 interfaces
for connecting to tools written in C/C++, such as the ABC
system [7] and the Berkeley ZZ SAT-solver and model-checker
by Niklas Een. The Berkeley ZZ model-checker is SAT-
based and includes an efficient implementation of bounded
model checking (BMC) [8], an interpolation-based model
checker [9], and Property-Directed Reachability (PDR) [10],
[11] (Section II-C).

Design can enter our system in two ways. RTL written
in Verilog is translated into a formal model by Verilog
Translator (Section II-A). Transistor Analyzer (Section II-B)
extracts finite-state machines from transistor-level design. Our
verification engine is build on top of AIG- and BDD-based
symbolic simulator. Its seamless connection to the theorem
prover is provided by GL-system (Section II-E).

A. Verilog toolkit

A first step in analyzing circuits is to load them into our
verification system. We currently have two paths for loading
modules, one for RTL and one for transistor-level designs. The
Nano’s RTL model is around 600,000 lines of Verilog. To load
it, we have developed a Verilog-processing tool named VL-
Translator (VL), which has been recently released as a part of
the ACL2-Books repository [12].

VL-Translator is in many ways similar to a synthesis tool
without optimization. It parses the Verilog code, resolves all
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Fig. 1. FV Framework

of the connections between modules, recognizes flops and
latches, and so forth. Expressions like a + b are eliminated
by “synthesizing” an adder module of the appropriate size
out of gates. Unlike a real synthesis tool, no attention is
paid to making the circuit perform well. Instead, the focus
is on ensuring that the translated modules are “conservative”
with respect to Verilog’s 4-valued semantics. For instance,
the adders we synthesize completely unrealistically include
X-detection circuitry so that if any bit of either input is X
(unknown) or Z (undriven), the whole result is X; this is the
behavior Verilog mandates for the + operator.

Once Verilog modules have been fully simplified by VL,
they can be easily converted into E modules [13], [14], a
simple, hierarchical representation that we use as the basis for
our symbolic simulator. VL can skip over modules that have
problems and produces good warnings and error messages. It is
able to analyze and translate the entire Nano design in about
twenty minutes of single-threaded execution on a 2.93GHz
Intel R© Core-2 Xeon R© machine. The fast build time of our
formal model allows us to run regressions of a substantial
subset of our proofs every night, and to work with a current
model on a daily basis. Previously translated models can be



loaded into ACL2 in a matter of seconds.
Verilog translation is a mundane necessity, but it is also

difficult due to the scale of the language. It is tricky at
times, e.g., Verilog’s rules for expression types and sizes are
quite complex. Since VL already dealt with parsing, sizing,
etc., it did not take much effort to build a linting tool on
top of it. This linting tool looks for things like signal-name
typos, duplicate or undefined modules, duplicate wire assign-
ments, unused/undriven wires, multiply driven wires, and size
mismatches in assignments. It also looks for patterns that
sometimes point to potential problems. For instance, skipped
wires in the assignment

somevld = write3vld | write3vld | write1vld | write0vld

would be flagged as suspicious since write2vld is skipped
and write3vld is repeated. While linting is not really formal
verification, this reuse of VL took little effort to develop and
has really paid off. During a recent re-partitioning of the
existing design, it was used to check for thousands of potential
wire mismatches and type errors.

Another tool built atop VL is a web-based module browser
for visualizing the RTL sources. The module browser allows a
user to follow a wire through multiple levels of the hierarchy,
and it is in many ways a better way to view RTL design than
by searching through the Verilog files using an editor. It also
visualizes hierarchy of modules as a graph where nodes are
labeled by instances of the used submodules.

B. Transistor analyzer

The other way to load circuits into our system is with our
transistor analyzer. The Nano’s transistor-level netlist can be
printed as either a Spice or Verilog file, either of which can
be read by our transistor analyzer. When reading Verilog, we
can leverage VL to additionally allow RTL-level constructs
to be included. To begin, we use an algorithm described
by Bryant [15] to derive an And-Inverter graph (AIG) [16],
[17] representation of the local update function for each
wire in terms of inputs to the respective channel-connected
component. This is a switch-level model of the circuit, but we
can use it to develop a cycle-based model that can be compared
against an RTL design.

The major steps of the process are shown in Figure 2. The
cycle-level model that we wish to produce consists of a set
of update functions for the wires of the circuit, each in terms
of the primary inputs and the previous values of the state-
holding wires, which are a small subset of the full set of wires.
These update functions represent each wire’s new value after
a clock cycle; they are computed by composing together some
number of phase-level update functions, each representing a
time period in which the clock and inputs are held constant for
a long enough time for the circuit state to settle. The update
functions for these phases are in turn composed of several
unfoldings of a unit-time update function, which itself is the
composition of the switch-level update functions computed by
Bryant’s algorithm. More details on the process of obtaining
these update functions follow.

We begin by addressing state-holding elements in the cir-
cuit. We look for combinational feedback loops among the
switch-level update functions of the circuit, and then break the
feedback arc of a loop by inserting a delay element (a clockless
flop) on that wire. This removes the zero-delay combinational
feedback loops while still allowing each state-holding wire to
depend on its previous value.

The phase-level update functions that we wish to eventually
derive represent each wire’s update over a longer time period,
in which the primary inputs and clocks are held constant until
the circuit settles to a steady state. One can express this steady
state in terms of the held values of the inputs and clock and the
initial values on the state-holding wires. However, to do this
correctly, we need to resolve timing races. For example, let
us consider a circuit representing a latch. If the enable signal
for the latch transitions from 1 (transparent) to 0 (opaque)
and its data input is also changing in the same phase, then
its next state depends on whether the updated data arrives
before the enable signal falls. It is difficult to recover accurate
timing information from a netlist alone, so instead we rely
on the circuit designers to provide timing information. (This
is no additional work to the designers since they already
provide “tick delays” for Verilog simulators, so they can
reliably simulate a transistor-level design.) We represent each
1-tick delay as a clockless flop. Therefore, when we compose
together our switch-level update functions to get flop-to-flop
update functions, these are effectively the updates for a single
tick-delay.

We then compute the phase-level update functions for each
flop in terms of the primary inputs and flops. This is done by
unfolding the single-tick update function under stable inputs
until a fixpoint is reached. The unfolding process starts at
a symbolic initial state. Each step represents a unit delay.
The values of primary inputs are held constant while the
states are allowed to update. During this process, we check
for combinational equivalence between the nth and n + 1st
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unfolding. When two consecutive unfoldings are combination-
ally equivalent, then a fixpoint has been reached. Since the
unfolding is much easier than checking equivalence, we may,
for optimization purpose, skip the latter for several steps, and
check whether we reached a fixpoint every few steps only.

There is one tricky point in the fixpoint computation de-
scribed above. For some settings of the inputs and initial
states, the circuit may oscillate and never arrive at a stable
state, and therefore there may not be a fixpoint. While such an
oscillation should not occur in the actual operation of the cir-
cuit, sometimes they may occur starting from an unreachable
state. We resolve this problem by identifying an oscillation
condition, then modifying the original update function for the
affected state bits by setting them to X when the oscillation
condition occurs. This modification is conservative, and will
only produce X-values in symbolic simulation if such an
oscillation occurs in a reachable state.

In order to compute the single-clock-cycle update function,
we first compute the fixpoint, as described above, for each
of several phases that make up a clock cycle. These phases
are determined by the relative timing of the clocks and input
signals. For example, if the inputs arrive by some setup time
before the positive clock edge and are held for some hold time
after that edge, but may be unpredictable in between, then an
appropriate sequence of phases would be:

1) Clock low, inputs set to symbolic variables (setup time)
2) Clock high, inputs remain set to the same symbolic

variables (hold time)
3) Clock high, inputs set to X
4) Clock low, inputs remain set to X.

We then compose these phases together into the single-clock-
cycle update functions.

In order to prove this cycle-level model sequentially equiv-
alent to an RTL specification, we first search for a reset state.
A reset sequence for both the circuit and its RTL specification
can be found by using a bounded model-checking search from
an initial state where all state-holding elements are set to X.
This search finds an earliest reachable state in which all state-
holding elements are non-X. The counterexample produced by
the BMC run is a reset sequence for both the circuit and its
specification, and we run this reset sequence on both models to
find corresponding starting states. We then use the sequential
equivalence checking capabilities of ABC and Berkeley ZZ to
prove equivalence between the circuit and RTL models.

Our transistor-to-RTL equivalence checking tool is in an
early stage of development, but it is able to work with
transistor-level designs containing hundreds of thousands of
transistors and sophisticated dynamic logic schemes. As this
tool matures, we expect it to replace the expensive and
inconclusive equivalence-checking tools now used. It will
also give designers the comfort of in-house tool support and
customization.

C. External tools

The ACL2 system provides a way to interface with external
tools. In order to protect soundness, the ACL2 system requires

a trust tag to be declared before an external tool may be called.
This mechanism allows us to keep track of the results obtained
outside ACL2. We use it to connect to ABC and Berkeley ZZ.
Our main uses of ABC are for sequential equivalence checking
and to simplify AIGs during transistor analysis, where the
size of AIGs grows very fast and affects our ability to check
whether we have reached a fixpoint. At this point we do not
have any ability to verify that the AIGs returned from ABC
after simplification are functionally equivalent to the original
AIGs. Therefore, whenever we use ABC, our final theorems
are reliable only if ABC returns reliable results.

When we use the Berkeley ZZ SAT-solver, we have the
ability to verify the result returned. If the AIG represents a
satisfiable condition, we will get a satisfying assignment that
can be checked by ACL2. If Berkeley ZZ claims that the
formula is unsatisfiable, it is also possible to ask that Berkeley
ZZ return a resolution-style proof of its claim; this proof is
then used as a hint for the ACL2 theorem prover to prove
that the formula does indeed always evaluates to false. We
developed a proof-checker for this output in ACL2 that was
also verified [18]. Since this checking process is decoupled
from the implementation of any external SAT-solver, we can
use any SAT-solver as long it can emit a similar resolution-
style proof. During proof development, we generally turn off
our proof-checking procedure and use the SAT-solver with
ACL2’s trust-tag mechanism; we also forgo its use when
debugging.

The Berkeley ZZ system is tightly connected to our system.
In fact, it can be compiled as a shared object library that
our underlying (ACL2) Lisp directly loads. The Berkeley ZZ
system contains several model-checkers; their input consists
of an initial state I , a transition function represented as an
association T of update functions to state variables, and a
property P . All sets and functions are represented as AIGs.
At this time, we use the Berkeley ZZ model-checkers with
trust tags. However, since the PDRmodel checker returns
either a counterexample (in case of failure), or (in case of
a valid property) it can return a stronger property Q that is
an inductive invariant, we plan to add a proof-checker support
similar to that of the SAT-solver-checker. For a valid property,
we only need to to check three conditions:

1) whether the initial state satisfies the (new) strengthened
property (I =⇒ Q),

2) whether the new property implies the original property
(Q =⇒ P )

3) whether the new property is inductive:

(Q ∧ T ) =⇒ Q′

where Q′ is the property with state variables substituted
by their update functions.

The first two conditions are generally easy to check using
BDDs, or we can use our verified SAT-solver. We can check
the third condition with our verified SAT-checker mechanism.

Our system can accommodate additional external tools. We
use two main criteria for choosing external tools:



• Are the results of the tool verifiable, and is it easier to
check them than to compute them?

• Does the tool provide superior techniques that would be
hard to reproduce in the ACL2 system?

Whenever a tool helps us to solve more problems we are open
to consider its addition to our verification framework.

D. BDD library

Using ACL2, we have implemented a library for working
with Binary Decision Diagrams (BDDs) [19]. The library
relies on ACL2’s built-in hash-consing and memoization
schemes [20] for performance, but its operations are all
implemented quite simply and can therefore be reasoned about.
Each operation is proven correct with respect to a definition
of BDD evaluation. That is, for any Boolean operation ×
implemented in the library, we prove

∀x ∈ Bn : (f ⊗ g)(x) = f(x)× g(x)

where f and g are BDDs, ⊗ is a Boolean operation over
BDDs, and × the respective Boolean operation. The BDD
library plays an important role in many of our proofs about
arithmetic circuits.

E. GL

Verification of a complex software or hardware system can
become overwhelming, even to a knowledgeable verification
expert. In addition, when the main idea of the proof is clear,
numerous low-level lemmas may need to be proven in support
of the top-level theorem. We use the ACL2 theorem prover to
orchestrate such efforts; users provide milestones that guide
ACL2 to the final goal. These milestones come in the form of
lemmas about the design, and their formulation may require a
deep knowledge of Nano design details. Changes in the design
may invalidate previously proven lemmas and subsequently
require new lemmas to be proven.

In our verification efforts, we find that many claims involve
functions defined only over a finite domain. When such a claim
is made, it can often be discharged by symbolic simulation of
the functions with minimal manual intervention of the user.
The motivation behind the G system [21] was to simplify the
proofs of theorems with finite-input domains. The G system
allowed the symbolic simulation of all ACL2 functions; this
was implemented by representing the input domain as BDDs
and simulating ACL2 functions with a corresponding BDD-
based symbolic simulator. The G system rendered proofs of
many lemmas into symbolic executions. The G system was
implemented in Common Lisp and hence outside ACL2 logic;
therefore, there was no way to prove its soundness, and G was
used with a trust tag.

In 2010, Swords re-implemented the capabilities of the G
system using only ACL2 code. This new system is called
GL – for G in the Logic – and used ACL2 to prove its
implementation is correct [4]. GL allows any ACL2 function
to be either translated into its symbolic counterpart, or be
symbolically interpreted on the fly. We generally use GL-based
symbolic simulation as a decision-procedure. GL can be used

for any function admitted to ACL2 whose input is constrained
to a finite domain.

The GL system has became a core element of our verifi-
cation framework, and this framework takes full advantage of
our ability to manipulate AIGs and BDDs. GL allows us to
write our specifications at a fairly high level of abstraction;
for example, we often use integers instead of bit-vectors.

GL claims have a form

hypothesis =⇒ conclusion

where the hypothesis identifies a finite input domain, and the
conclusion a conjecture we would like proven. An example of
hypothesis is an ACL2 statement below for the assumption: a
is a 8-bit integer, and b is a 8-bit natural number, and flgs
is a Boolean vector of length 3.

(and (integerp a)
(<= -128 a)
(< a 128)
(integerp b)
(<= 0 b)
(< b 256)
(boolean-listp flgs)
(= (length flgs) 3))

GL operates in two main modes. In BDD-mode, the map-
ping of bits within the theorem’s variables to BDD variable
indices is controlled by the user; each variable is bound to
a symbolic object. Sufficient coverage of such bindings is
automatically checked; that is, for any values of a, b and flgs
that satisfy the hypothesis, there must be a possible evaluation
of the symbolic objects that results in those values. The
hypothesis is used as a condition when parametrization [22]
is performed; this restricts subsequent symbolic computations
to only inputs satisfying the hypothesis. When using AIGs
instead of BDDs, GL can query the SAT solver either with or
without checking the UNSAT proof. The GL system has been
recently released as a part of the ACL2 books repository [12].

III. EXAMPLES OF PROBLEMS AND SOLUTIONS

In this section, we will point to several examples of prob-
lems that were raised in course of the design process. Some of
them are classic problems that have been described in earlier
publications (e.g., verification of arithmetic circuits), other
might appear new to the reader. Our main goal is to illustrate
how our framework allows us to quickly respond to various
requests, which is important in the time-sensitive context of
an industrial design process.

A. RTL verification of arithmetic circuits

Our first formal verification effort at Centaur was in the
area of the functional correctness of the RTL design [3], [23].
In particular, we focused on the execution units that perform
arithmetic and logical operations, such as add, subtract, multi-
ply, divide, bitwise operations, conversions, and string manip-
ulations. The micro-operations that are actually implemented
by the hardware are often closely related to counterparts on



the architectural (ISA) level, which are documented in publicly
available Intel(R) 64 and IA-32 Architecture Software Develop-
ers Manual (available at Intel’s web site http://www.intel.com).
Therefore, clarifying these specifications and writing them
formally was easier than for some other parts of the design.
The Nano design poses many of the same challenges faced
by the pioneers of formal verification of arithmetic circuits
in industry: Intel [24]–[26], AMD [27]–[30] and IBM [31].
Thanks to our previous experience [25], [32]–[35] and pub-
lished knowledge in this area, we were adequately prepared
to tackle this kind of problem.

After verifying the unit responsible for floating-point ad-
dition, conversions and logical operations [14], we worked
on integer and later on floating-point multipliers. Centaur’s
design is fully compatible with the 64-bit extension of IA-
32(R) architecture. It implements a whole variety of integer-,
x87 floating-point-, and packed (Single Instruction Multiple
Data) integer and floating-point multiply instructions.

Verification of multipliers has been previously done at Intel,
AMD and IBM [25], [28], [31], [34]. While the approach
taken at AMD appears to be most rigorous, it also requires
the most manual intervention from a very sophisticated user.
It uses ACL2 – every lemma is an ACL2 formula. The main
correctness theorem is obtained from a huge number of low-
level lemmas derived from the design and composed into
higher-level theorems by a knowledgeable ACL2-user and
mathematician. Although it hasn’t been explicitly stated, the
proof does not seem very robust with respect to the changes
to design. That means a limited portability from project to
project. The approach taken by Intel and IBM, similarly
to our approach, heavily relies on symbolic simulation that
allows a fair amount of automation. It requires sequential
decomposition of the design, which adds a layer of complexity
because one needs to find appropriate properties for signals
at the decomposition boundaries. The strength of Intel and
IBM’s approaches lie in very efficient symbolic simulators.
Their weakness is in the way the lemmas are composed into a
top-level theorem. While Intel relies on a light-weight theorem
prover that has only a loose connection to symbolic simulator.
We are not aware of any mechanical theorem prover used in
IBM proofs. Although the top-level multiplier proofs can be
done by hand, there is always space for a human error.

There are similarities and differences of the previous ap-
proaches and ours. Our proofs of multipliers are done com-
pletely within ACL2. We use GL to prove the low-level
lemmas about symbolic values computed by concrete signals
over a fixed number of steps. Even though BDD-based GL has
been satisfactory, we made a use of the verified-SAT (see Sec-
tion II-C) as as well. By composing these lemmas together, we
proved that the RTL design correctly implements the Radix-2k

Booth Encoding algorithm within the specified latency. Next
step was to prove that this algorithm indeed implements integer
multiplication. To complete the floating-point multiplication
proof, we proved the correctness of the floating-point result,
including the exception flags, after rounding. This was also
done using GL.

We were able to verify that all of the IA-32e multiply
instructions, both integer and floating-point, were correctly
implemented. The verification of multipliers fully stressed our
BDD- and AIG-based methodology. The intrinsic complexity
of the multipliers forced us to work on optimizing the per-
formance of our system. All proofs showed great portability
when we adopted them to a new project. Smaller proofs for
instructions that include 8x8, 16x61 and 32x32 multiplication
run as part of nightly regression proofs, while the regressions
that involve 64x64 multiplication proofs require hours and run
on weekly basis.

More recently, we turned our attention to the Nano
MMX/SSE unit. This unit implements around 120 operations
for working with packed integer data, e.g., it can add, subtract,
shift, and compare packed data (signed and unsigned bytes,
words, double-words, and quad-words); and shuffle and blend
parts of vectors. Unlike our previous arithmetic verifications,
this work began after GL had been connected to the proof-
producing SAT solver, so we were able to easily switch
between BDDs and SAT for particular instructions. Within
a couple of weeks we were able to verify all but three
instructions (which have a more complex interface) against
simple ACL2 specification functions. The entire verification
can be re-run in forty minutes (and we do this nightly), except
for the MPSADB instruction which takes almost three hours
for the SAT solver to finish.

All these proofs are very robust and porting them to a
new design project required minimal effort. We regularly run
regressions of the proofs to monitor changes in the design,
and occasionally find newly introduced problems.

B. RTL-to-RTL equivalence checker

Whether it is a fix of a bug, or a change to improve
timing, or addition of new functionality to the design, we
need to assure that the RTL changes are done as intended.
If those changes do not cross the latch boundaries, i.e. are
purely combinational, logic designers can verify them using
a web based tool implemented in our framework. The tool
does not require any knowledge of formal methods. Designers
are required to write in Verilog a wrapper around the two
modules they want to compare, identifying matching inputs
and outputs, and conditions under which they are supposed to
match. In case of a mismatch, a counterexample is generated
that can be directly animated by a Verilog simulator.

This is a perfect example of a lightweight FV tool that keeps
designers in their comfort zone. So far there hasn’t been any
request for its extension to a more general equivalence checker,
but we are leaving this option open.

C. Late changes in the design

The later a bug is found in the design process, the more
costly it is to repair. Before any version of the Nano goes out
as a product, it goes through intensive testing and debugging.
Lab parts have to be able to boot tens of different operating
systems, work under different temperatures and various volt-
ages. Any bug that is found in this late phase of the process



causes delays that directly translate into financial loss. There
are different ways to fix discovered problems. One way is
to change the Nano microcode; this only requires metal-level
mask changes. A more extreme update is to change transistors,
thus requiring many more production masks to be changed.
When making late-stage changes, it is important to keep a
hardware fix as local as possible so the rest of the layout does
not need to be changed; therefore, redundant gates/transistors
are included with the Nano design. When there is a need for
a minor fix, logic designers may use these extra gates, so
only wiring needs to be changed. Finding a close-to-optimal
solution for a late fix can be a non-trivial task and may require
a lot of effort, and this occurs when time is most critical. In
order to help Nano designers with this task, we have a tool that
finds candidates for bug-fixes, and proves, after the change,
that the circuit-level implementation with the suggested change
is equivalent to the fixed logic design.

The task can be formulated as follows: given two Verilog
files – one on the RTL level and one as a flat gate-level netlist,
find a mapping between the signals in RTL and the netlist.
We assume that the inputs and outputs of the design match
and the state-elements in both designs match (modulo inver-
sion). Our tool uses commonly-known, equivalence-checking
techniques, including random simulation to compute candidate
equivalence classes. We also use ABC to simplify AIGs and
the SAT-solver to check final equivalences. Thus, a designer
can be presented with potential solutions for a bug fix that is
assured to be correct.

D. Clock-tree analysis

Another designer request was to analyze the Nano’s clock
tree. For a digital circuit design, the clock signal has to be
distributed across the whole chip. The clock going into a
particular unit is often gated (anded with an enable signal) so
it can be disabled. Disabling the clock is almost like turning
off the unit: its state is frozen so the values on (most of) its
wires stop changing, saving power.

Since it is challenging to effectively distribute the clock
signal throughout the chip, units often have several clock
inputs instead of just one. By convention, these clocks are
supposed to be equivalent. That is, if there is any clock gating
in that unit, then the enable signals to each clock should be
equivalent.

The designers wanted a way to check that this convention
was met, since otherwise serious electrical problems could
result. This sounds like a simple problem with a clear solution:
all we need to do is symbolically simulate the processor, then
gather the expressions for the clock signals being given to
each unit and check whether they are equivalent. The logic
in the clock tree is simple, so the equivalence check should
be trivial. Unfortunately, symbolic simulation of the whole
processor is still out of our reach. There are several difficulties.
Most obvious is the scale of the problem. The more pragmatic
one is that certain Verilog constructs are not yet supported by
VL. We were able to clear these hurdles by using a cone-of-
influence reduction to extract the clock tree from the rest of the

processor, along with some manual overrides of problematic
modules. The clock verification has been reduced to a very
simple combinational equivalence problem.

E. Dependency analysis

The problem described in this section occurred in the
context of the verification of transistor-level design before
we had a transistor analyzer (Section II-B. One of the clas-
sic hardware design problems is to assure equivalence, or
some other weaker notion of correctness. For example, is the
RTL design correct with respect to its architectural model?
Is the transistor-level implementation of the design correct
with respect to the RTL? Both questions can be partially
answered by simulation-based techniques or by application of
formal methods. Tools providing the latter are generally known
as equivalence checkers. The difficulty of the equivalence-
checking problem depends on how closely the transistor-level
implementation structurally matches its RTL counterpart. If the
state elements of the two design levels match, the problem is
reduced to combinational equivalence problem. Otherwise, we
might be lucky to find a retiming transformation that brings
the two designs to a state-mapped pair. In the worst case we
end up with a general model-checking problem for a safety
property.

All of these cases have, at least in theory, a solution.
However, we have not mentioned the preamble of the veri-
fication of transistor-level design: we are dealing with two
designs on very different level of abstraction – RTL as a
specification and a transistor-level implementation. In order
to formulate the equivalence checking problem, we need to
extract a finite-state machine from both – the RTL design
and the transistor-level design. At the time when the problem
occurred, we had a solution for the former, but we did not
have a complete solution for the latter (until we completed
our transistor analyzer), at least not for the general case of a
complex dynamic design.

Centaur designers were relying on a CAD-vendor-supplied
tool. The tool takes a Spice file and a corresponding Verilog
file, extracts finite-state machines for both, and performs con-
crete or symbolic simulation of both levels while comparing
their respective outputs. The capacity of this commercial
equivalence tool is limited and often it switches to random
simulation after just a few symbolic steps. If the tool finds
some mismatches, it reports them in a form of a counterex-
ample. However, if the tool does not find any counterexample,
designers do not really know if the two models are equivalent –
especially when the tool switches to random simulation. How
good is the coverage of the tests? Even when the tool finishes
symbolic simulation successfully, designers are left with the
question whether the number of steps simulated is actually
sufficient to ensure the equivalence of the two models.

In order to help designers with the settings of the
equivalence-checker, we provide a tool that checks dependency
of RTL signals on other signals and their delays. Often a
pipelined design transforms its inputs to its outputs in a fixed
number of cycles. In most cases, a designer knows the depth



of such a pipeline. However, this may not be as simple as
it looks. Under some conditions, inputs may be stored in
internal latches before they propagate. In order to relieve the
complexity of the symbolic simulation, some of control signals
may be set to specific values. This can effect the time needed
to propagate inputs to the outputs. Our tool can help designers
discover a reset sequence that brings a machine model to
a state where all state-elements have Boolean values. Once
done, we then check whether, starting from Boolean values,
the states maintain Boolean values. Next we compute for each
output signal its dependency on input signals and state-holding
elements, and delays. This is done by checking dependency
of update functions on variables using SAT-solver.

As an example, consider an output o in a perfectly pipelined
design. Assume that o at time 2 depends on inputs from set
I0 at time 0, I1 at time 1 and I2 at time two. If at time 3, the
same output depends on I0 at time 1, I1 at time 2, and I2 at
time 3, we can safely say that 3 symbolic simulation cycles
are enough to verify o. The situation might be more complex
and we may need to consider more complicated scenarios. In
any case, dependency analysis provides us a better estimate
of the quality of the results obtained from our commercial
equivalence checker.

IV. CONCLUSION

We described the formal verification framework being used
at Centaur. It is based on ACL2 – a theorem prover that is
publicly available under GNU General Public License. So far
we are very happy with its stability and support. It gives us
valuable flexibility to implement methods and techniques and
prove their soundness. The VL translator allows us to build a
formal model from a Verilog design. The GL system, which
is implemented and verified in ACL2, equips us with SAT and
BDD based procedures that are suitable for problems arising
in hardware verification. Various problem-oriented tools have
been developed and fully or partially verified. Our main goal is
to help validation engineers and logic and transistor designers
to reach their goals without sacrificing quality of the design.
Our system allows us to react quickly to new problems that
arise in the design process.

Since the first use of the ACL2 in Centaur’s development
environment, many ACL2 books that boost the performance
of our verification framework have been developed. These
include efficient hashing and garbage collection, memoization
of functions, support for pseudo-random functions, efficient
set operations, just to name a few. A package that manipulates
special types of Binary Decision Diagrams (UBDDs) has been
re-implemented within the ACL2 logic and proved correct.
GL system and VL translator have been released to ACL2
community.

A verified connection to a SAT-solver enables us to solve
problems that were out of reach of automatic verification
before. One of our immediate goals is to enhance the PDR
model-checker with proof checking. Another goal is to finish
the transistor analyzer and incorporating it into an equivalence
checker that can completely replace the vendor tools used now.

Our goal is to continue improving our tools, both in depth
– allowing us to solve problems on a bigger scale, and
with higher assurance of their correctness; and in breadth
– enriching the variety of point tools tailored for specific
problems in our designs.
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