

The Milawa Theorem Prover is Sound
down to the x86 machine code that runs it

Jared Davis
Centaur Technology, USA

Magnus Myreen
University of Cambridge, UK

Slides for Northeastern University, July 2012

Correctness in Computer Science

Goals

Artifact

????

Program
Hardware module
Algorithm
Protocol
Type system

Implements the C standard
Correctly divides floats
Finds the minimum spanning tree
Transactions are secret
Subtyping is transitive

Formal Verification with Theorem Provers

Goals

Artifact
Modeling

Effort Model

Theorem
Prover

Modeling
Effort Properties

ProofsGuidance

Artifact
Modeling

Effort

Goals
Modeling

Effort

Causes for Concern

Model

Theorem
Prover

Properties

ProofsGuidance

Goals
Modeling

Effort

Artifact
Modeling

EffortArtifact
Modeling

Effort

Focus: Soundness of the Theorem Prover

Model

Theorem
Prover

Properties

ProofsGuidance

ProofsGuidance

Informal
Specification

Artifact
Translator

125K loc

Human
Effort

850K line design

Heavy, heavy books

Scope of the Theorem Prover

Properties

350K loc

Model

ProofsGuidance

Informal
Specification

Artifact
Translator

125K loc

Human
Effort

850K line design

Heavy, heavy books

Scope of the Theorem Prover

Model

Properties

+

300K lisp lines
70K c/asm lines

2-4M
lines

6-15M
lines

350K loc

Guidance

Properties

Model

Informal
Specification

Artifact
Translator

125K loc

Human
Effort

850K line design

Heavy, heavy books

Proofs

This Talk

+

300K lisp lines
70K c/asm lines

2-4M
lines

6-15M
lines

350K loc

What is Milawa?

MILAWA !> (%defun in (a x)
 (if (consp x)
 (or (equal a (car x))
 (in a (cdr x)))
 nil)
 :measure (len x))

User Interface

, Unsound Unverified Interactive, command-line program
Define functions
Propose theorems
Manage proof attempts

Two goals remain.

 1. (EQUAL (ORDP (LEN X)) 'T)

 2. (IF (EQUAL (ORD< (LEN (CDR X)) (LEN X)) 'T)
 'T
 (IF (EQUAL (CONSP X) 'NIL)
 'T
 (EQUAL (NOT (EQUAL A (CAR X))) 'NIL)))

MILAWA !>

(%defun in (a x)
 (if (consp x)
 (or (equal a (car x))
 (in a (cdr x)))
 nil)
 :measure (len x))

Termination Proof

MILAWA !>(%split)
; Splitting clause 2.
; Splitting clause 1.
Two goals remain.

 1. (EQUAL (ORDP (LEN X)) 'T)

 2. (IMPLIES (AND (NOT (EQUAL A (CAR X)))
 (CONSP X))
 (EQUAL (ORD< (LEN (CDR X)) (LEN X))

 'T))

MILAWA !>

(%defun in (a x)
 (if (consp x)
 (or (equal a (car x))
 (in a (cdr x)))
 nil)
 :measure (len x))

Termination Proof

MILAWA !>(%crewrite default)
; Rewrote clause #2 in 0.001999 seconds (proved) ...
; Rewrote clause #1 in 0.038994 seconds (proved) ...
; Rewrote 2 clauses; 0 (+ 0 forced) remain.
All goals have been proven.

MILAWA !>(%crewrite default)
; Rewrote clause #2 in 0.001999 seconds (proved) ...
; Rewrote clause #1 in 0.038994 seconds (proved) ...
; Rewrote 2 clauses; 0 (+ 0 forced) remain.
All goals have been proven.

MILAWA !>(%admit)
; Compiling worlds for IN...
; Compiling proofs for IN...
...
;; Preparing to admit IN.
;; Proof sizes total: 3,409,472 conses ...
; Checking the proofs...
...
; Proof-checking completed.
;; Proofs accepted. Saving as user/admit-in.proofs
...
New rule: IN

MILAWA !>

Example Theorem: (not (in a a))

E1

E2

E3

Let's prove lists can't be in themselves

This can't happen,
no circular conses

Lists have to be bigger than their elements

MILAWA !>(%defthm rank-when-in
 (implies (in a x)
 (< (rank a) (rank x))))
One goal remains.

 1. (IMPLIES (AND (IN A X))
 (IFF (< (RANK A) (RANK X)) 'T))

The Key Lemma

Lists have to be bigger than their elements:

One goal remains.

 1. (IMPLIES (AND (IN A X))
 (IFF (< (RANK A) (RANK X)) 'T))

MILAWA !>(%cdr-induction x)
... five subgoals ...

MILAWA !>(%auto)
... various progress messages ...
Two goals remain.

 1. (IMPLIES (AND (NOT (CONSP X)))
 (NOT (IN A X)))

 2. (IMPLIES (AND (IN A (CONS X1 X2))
 (NOT (IN A X2)))
 (< (RANK A)
 (+ '1 (+ (RANK X1)
 (RANK X2)))))

One goal remains.

 1. (IMPLIES (AND (IN A X))
 (IFF (< (RANK A) (RANK X)) 'T))

MILAWA !>(%cdr-induction x)
... five subgoals ...

MILAWA !>(%auto)
... various progress messages ...
Two goals remain.

 1. (IMPLIES (AND (NOT (CONSP X)))
 (NOT (IN A X)))

 2. (IMPLIES (AND (IN A (CONS X1 X2))
 (NOT (IN A X2)))
 (< (RANK A)
 (+ '1 (+ (RANK X1)
 (RANK X2)))))

 !A good rule

 !A good rule

MILAWA !>(%qed)
; Compiling worlds for RANK-WHEN-IN...
...
; Preparing to check RANK-WHEN-IN.
;; Proof size: 4,712,680 conses.
; Checking the proof.
...
;; Proof accepted. Saving as user/thm-rank-when-
in.proof
New rule: RANK-WHEN-IN

MILAWA !>(%defthm not-in-self
 (not (in a a)))

One goal remains.

 1. (EQUAL (IN A A) 'NIL)

MILAWA !>(%use (%instance (%thm rank-when-in)
 (x a)))
... one goal with messy ifs ...
MILAWA !>(%split) ;; to clean it up
One goal remains.

 1. (IMPLIES (AND (IFF (< (RANK A) (RANK A)) 'T))
 (NOT (IN A A)))

Our Goal Theorem

MILAWA !>(%crewrite default)
; Rewrote clause #1 in 0.001 seconds (proved), [...]
; Rewrote 1 clauses; 0 (+ 0 forced) remain.
All goals have been proven.

MILAWA !>(%qed)
; Compiling worlds for NOT-IN-SELF...
...
;; Proof accepted. Saving as user/thm-not-in-
self.proof
New rule: NOT-IN-SELF

The Milawa Interface

User Interface

, Unsound Unverified Interfacing Nonsense
5,000 lines of ACL2 macros=

Theorem Proving Tactics
2000 functions, 100,000 lines**

(Defined in the Logic)

crewrite

split

use

...

Guidance

Properties

Model

Informal
Specification

Artifact
Translator

125K loc

Human
Effort

850K line design

Heavy, heavy books

Proofs

This Talk

+

300K lisp lines
70K c/asm lines

2-4M
lines

6-15M
lines

350K loc

Milawa: A First Approximation

User Interface

, Unsound Unverified Proof
Files Kernel

Jitawa
Machine Code

C

The Logic

C

Proof
Files

User Interface

, Unsound Unverified

Foreshadowing

Kernel

Jitawa
Machine Code

The Logic

Formally Verified
with HOL4

Doesn't need to
be sound...

Formally Verified
with HOL4

Teeny Tiny
Proof Steps

So what's in the Kernel?

Kernel

Kernel (Lisp Program)
165 functions, 2000 lines incl. PC

Define a function
Prove a theorem

Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

=

bluebison.net

But there's kind of a catch...

Great Big
Proof Files!

Teeny Tiny
Proof Steps

But there's kind of a catch...

User Interface

, Unsound Unverified
Too big
to Store

Too big
to Build

Too big
to Check

Kernel

Jitawa
Machine Code

C

The Logic

Reflection and Self-Verification

Interfacing Nonsense
5,000 lines of ACL2 macros

Theorem Proving Tactics
2000 functions, 100,000 lines**

(Defined in the Logic)

crewrite

split

use

...

Kernel (Lisp Program)
165 functions, 2000 lines incl. PC

Define a function
Prove a theorem

Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Theorem Proving Tactics
2000 functions, 100,000 lines**

(Defined in the Logic)

Bootstrapping Proofs
13,000 theorems, 8 GB on disk

“The tactics can only prove
formulas that the proof

checker accepts.”

A Self-Verifying Theorem Prover

Find, Writes

Kernel (Lisp Program)
165 functions, 2000 lines incl. PC

Define a function
Prove a theorem

Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Interfacing Nonsense

Theorem Proving Tactics
2000 functions, 100,000 lines**

(Defined in the Logic)

Bootstrapping Proofs
13,000 theorems, 8 GB on disk

“The tactics can only prove
formulas that the proof

checker accepts.”

A Self-Verifying Theorem Prover

Find, Writes

Kernel (Lisp Program)
165 functions, 2000 lines incl. PC

Define a function
Prove a theorem

Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Interfacing Nonsense

Checks

Theorem Proving Tactics
2000 functions, 100,000 lines**

(Defined in the Logic)

Bootstrapping Proofs
13,000 theorems, 8 GB on disk

“The tactics can only prove
formulas that the proof

checker accepts.”

A Self-Verifying Theorem Prover

Find, Writes

Kernel (Lisp Program)
165 functions, 2000 lines incl. PC

Define a function
Prove a theorem

Save your progress (checkpoint)
Switch to a new proof checker

Proof Checker
100 functions, 800 lines
(Defined in the Logic)

Interfacing Nonsense

Checks

Becomes

(Verified) Theorem Prover

Bootstrapping

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 2

Core

Level 11 All other tactics

Conditional rewriter

Evaluation, unconditional rewriting

Rewrite traces

Clause splitting

Clause factoring, splitting groundwork

Assumptions and clauses

Miscellaneous groundwork

Rules about basic functions

Propositional reasoning

Primitive rules of inference only

Guidance

Properties

Model

Informal
Specification

Artifact
Translator

125K loc

Human
Effort

850K line design

Heavy, heavy books

Proofs

This Talk

+

300K lisp lines
70K c/asm lines

2-4M
lines

6-15M
lines

350K loc

Kernel

Proof Checker

Common Lisp Runtime (CCL, GCL, ...)

Operating System (Linux, Mac, ...)

Hardware (Intel, AMD, ...)

The Soundness Story, So Far

Fundamentally have to trust
Use multiple systems, at least

Practically have to trust
(no verified options)

Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

The program is short
“Social proof”

Theorem Proving Tactics Proven correct by the kernel

Two Projects Meet

Milawa
Self-verifying theorem prover

Jared Davis, UT Austin, 2009

verified LISP on
x86, ARM, PowerPC

Magnus Myreen, Cambridge, 2008

wikipedia

Operating System (Linux, Mac, ...)
Practically have to trust
Use multiple systems, at least

Kernel

Proof Checker

Hardware (Intel, AMD, ...)

So can we do this?

Fundamentally have to trust
Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

The program is short
“Social proof”

Theorem Proving Tactics Proven correct by the kernel

Common Lisp Runtime (CCL, GCL, ...)Common Lisp Runtime (CCL, GCL, ...) verified LISP on
x86, ARM, PowerPC

Well, no.

verified LISP on
x86, ARM, PowerPC

Bootstrapping Proofs
½ billion unique conses

16 hours on CCL
8 GB on disk

Interpreted, slow
32-bit, memory limited

Magnus set out to develop Jitawa, a new Lisp
runtime for Milawa.

bluebison.net

What does Milawa need?

Theorem Prover
First-order, recursive functions
Naturals, symbols, conses

12 Primitive Functions
cons car cdr consp
+ - < natp
symbolp symbol-<
if equal

11 Macros
and or list cond
let let*
first … fifth

Kernel
Destructive updates
Hash tables
File reading
Timing, status messages
Checkpointing
Function compilation
Dynamic function calls
Runtime errors

I/O Requirements
½ billion unique conses

8 GB on disk
Abbreviations are critical

What does Milawa really need?

Theorem Prover
First-order, recursive functions
Naturals, symbols, conses

12 Primitive Functions
cons car cdr consp
+ - < natp
symbolp symbol-<
if equal

11 Macros
and or list cond
let let*
first … fifth

Kernel
Destructive updates
Hash tables
File reading
Timing, status messages
Checkpointing
Function compilation
Dynamic function calls
Runtime errors

I/O Requirements
½ billion unique conses

8 GB on disk 4 GB input file
Abbreviations are critical

Jitawa – A Scaled Up, Verified Lisp

Verified Core
7500 lines of verified x86 machine code

Just-in-time (JIT) compiler to 64-bit x86
Copying garbage collector
Up to 231 conses (16 GB), big stacks
Efficient parser with #1=... abbreviations
Always exits gracefully
Calls C routines for I/O

Unverified C Wrapper
200 lines (with #if debug)

Parse command line
Allocate memory

Initialize IO function pointers
Invoke verified core

read_line
print_string
report_error

Far simpler than a full Common Lisp implementation

Jitawa – A Scaled Up, Verified Lisp

Verified Core
7500 lines of verified x86 machine code

Just-in-time (JIT) compiler to 64-bit x86
Copying garbage collector
Up to 231 conses (16 GB), big stacks
Efficient parser, with #1= style abbreviations
Graceful exit in all circumstances
Calls C routines for I/O

Unverified C Wrapper
200 lines (with #if debug)

Parse command line
Allocate memory

Initialize IO function pointers
Invoke verified core

read_line
print_string
report_error

> '3
3
> (cons '5 '(6 7))
(5 6 7)
> (define 'increment '(n) '(+ n '1))
NIL
> (increment '5)
6

> '3
3
> (cons '5 '(6 7))
(5 6 7)
> (define 'increment '(n) '(+ n '1))
NIL
> (increment '5)
6

Implements an ordinary read-eval-print loop!

How is it Verified?

Jitawa Specification
400 lines of HOL

Parsing, Evaluation, Printing

X86-64 Model
(in HOL)

Not a full x86 model
Just the relevant instructions

Proof producing synthesis

Compiler, GC, Parsing, Printing
Algorithms Defined in HOL

HOL Proof
Effort

wikipedia

Testing+
flikr:vext01

HOL Proof

Jitawa Implementation
X86-64 Machine Code

Dot (Sym “print”) (Val 3)

Jitawa Specification (400 lines of HOL)

“(print 3) (g 5) ...”

(g x) = x
(h x) = (+ x 1)

Current State

“ (g 5) ...”

App (Fun “print”)
 (Const (Val 3))

sexp

rest

“>”
(Sym “nil”)

EV (g x) = x
(h x) = (+ x 1)

“>3”

Out

Defs

In

term

ans

“>3
 nil”

“ (g 5) ...”

Next Stateout'

out''

defs'

in'

Kernel

Proof Checker

Hardware (Intel, AMD, ...)

An Improved Soundness Story

Fundamentally have to trust
Use multiple systems, at least

Is the logic sound?
Is the program faithful to it?

The program is short
“Social proof”

Theorem Proving Tactics Proven correct by the kernel

Jitawa
Verified Core

Operating System (Linux, Mac, ...) Practically have to trust
Use multiple systems, at least

C Proven correct down to the
Machine Code in HOL4

Jitawa Specification
400 lines of HOL

Parsing, Evaluation, Printing

Lifting

Simplified Kernel

1700 Lines of
Jitawa Lisp

Jitawa Specification
400 lines of HOL

Parsing, Evaluation, Printing

Lifting

Simplified Kernel

1700 Lines of
Jitawa Lisp

Nice HOL4 Model
of the Milawa Kernel

Automated
(HOL4 tactics)

Faithfulness

Milawa Logic
Formalized in HOL

Syntax

Axioms

Inference Rules

Nice HOL4 Model
of the Milawa Kernel

Ext. Principles

Soundness

Syntactically provable

Semantically true

Milawa Logic
Formalized in HOL

Syntax

Axioms

Inference Rules

Ext. Principles

Milawa Logic
Semantics

Putting it all Together

Milawa Logic
Mechanics

Nice HOL4 Model
of the Milawa Kernel

Milawa Logic
Semantics

Jitawa Specification

X86-64 Model Jitawa Implementation
X86-64 Machine Code

Simplified Kernel
Lisp Code

Putting it all Together

Milawa Logic
Mechanics

Nice HOL4 Model
of the Milawa Kernel

Milawa Logic
Semantics

Jitawa Specification

X86-64 Model Jitawa Implementation
X86-64 Machine Code

Simplified Kernel
Lisp Code

Kernel

Proof Checker

Hardware (Intel, AMD, ...)

The New Soundness Story

Fundamentally have to trust
Use multiple systems, at least

Proven sound down to the
Machine Code in HOL4

Theorem Proving Tactics Proven correct by the kernel

Jitawa
Verified Core

Operating System (Linux, Mac, ...) Practically have to trust
Use multiple systems, at least

C

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

