
Embedding ACL2 Models in End-User Applications
Jared Davis1

Abstract. Formal verification, based on mechanical theorem prov-
ing, can provide unique evidence that systems are correct. Unfortu-
nately this promise of correctness is, for most projects, not enough to
justify its high cost. Since formal models and proof scripts offer few
other direct benefits to system developers and managers, the idea of
formal verification is abandoned.

We have developed a way to embed functions from the ACL2 the-
orem prover into software that is written in mainstream programming
languages. This lets us reuse formal ACL2 models to develop appli-
cations with features like graphics, networking, databases, etc. For
example, we have written a web-based tool for hardware designers
in Ruby on top of a 100,000+ line ACL2 codebase.

This is neat: we can reuse the supporting work needed for formal
verification to create tools that are useful beyond the formal verifi-
cation team. The value added by these tools will help to justify the
investment in formal verification, and the project as a whole will ben-
efit from the precision of formal modeling and analysis.

1 INTRODUCTION
ACL2 [16] is an interactive theorem prover. It combines a Lisp-
based programming language for developing formal models of sys-
tems with a reasoning engine that can prove properties about these
models. It has been used to formally verify hardware at companies
like AMD [25], IBM [26], and Rockwell Collins [30], and software
like compilers [23], virtual machines [20], and operating system ker-
nels [24]. ACL2’s authors were awarded the 2005 ACM Systems
Award for “pioneering and engineering a most effective theorem
prover... as a formal methods tool for verifying safety-critical hard-
ware and software.” An ACL2 team shared the gold medal with a
KIV team in the 2012 VSTTE Software Verification Competition.

Normally ACL2, or any other interactive theorem prover, is used
to formally verify an artifact—a hardware design, a C program, an
algorithm, a protocol, etc. This work is usually done by a team of
experts and largely consists of three interrelated activities:

1. Modeling. A model of how the artifact behaves is developed in
the theorem prover’s logic. This is often a large undertaking. For
instance, to model a program we may need to develop translation
tools like preprocessors, parsers, etc., and may also need to for-
malize how the programming language behaves.

2. Specification. A specification for the artifact is written down as
logical formulas. This is easy for some artifacts, e.g., it may only
take a few lines to say what a particular operation of an arithmetic
hardware unit is to compute. Other cases are much more difficult,
e.g., what does it mean for an operating system to be secure?

3. Proof. The theorem prover is guided to show that the model meets
its specification. Usually this is quite hard. Just how hard depends

1 Centaur Technology Inc. 7600-C N. Capital of Texas Hwy, Suite 300.
Austin TX, 78731, email: jared@centtech.com

on the scale and nature of the model and specification, on the
team’s skill in developing effective proof automation, etc.

Why would anyone go to all this trouble? Formal verification usu-
ally reveals subtle bugs in the artifact (which, once exposed, can be
fixed). It leads to mathematical proofs, checked by machine, that
serve as evidence that the artifact has been designed correctly. The
strength of this evidence depends on the precision of the model,
the correctness of the specification, and the soundness of the prover.
These concerns can often be addressed very convincingly.

1.1 Reusing Formal Models and Specifications
Unfortunately, due to the time and expertise it requires, formal ver-
ification is expensive. From a simple economic viewpoint, it only
makes sense to formally verify artifacts whose failures could be very
costly or tragic. This is still the case despite a lot of good work to
reduce the costs of theorem proving by improving proof automation,
interfaces, and pedagogy.

A different way to improve the cost/benefit situation is to increase
the benefit. One way to do this, and the focus of this paper, is to
reuse the modeling and specification efforts from formal verification
in useful ways. Here are some examples.

Example 1: Processor Simulators. Normally, long before a pro-
cessor design is to be manufactured, a program called a golden model
is written to explain how the hardware is supposed to behave. As the
hardware design evolves, it is continually simulated on test cases and
compared against the golden model. This is often the primary way
that bugs are found in the design. Since writing a golden model is
much like the Specification activity of formal verification, an idea is
to reuse the formal specification as the golden model. [12, 14]

This is not without challenges. A golden model needs to be some-
thing that the hardware design team can understand and practically
use. A basic requirement is that the model should run at high speeds;
fortunately ACL2 models and specifications are typically executable
as programs, and ACL2 has many features [13] that allow for effi-
cient execution. Other challenges include, e.g., how to connect the
model to simulation tools for hardware design languages so that the
design can be tested against the model.

When these challenges can be overcome, what does reuse accom-
plish? It avoids the need to separately develop the golden model and
formal specification, directly reducing costs. It improves confidence
in the formal verification effort, since the designers will have exer-
cised the specification in their simulations. It also allows for formal
analysis of the golden model, itself.

Example 2: Push-Button Analyzers. The Modeling activities
needed for formal verification may be even more amenable to reuse.



At Centaur Technology we design an X86 processor. As part of
our formal verification effort [27], we wrote an ACL2-based Ver-
ilog parsing and translation tool that builds formal ACL2 models of
our hardware modules. Since then, we have reused this code in other
tools like a linter and an equivalence checker.

These tools can be used by hardware designers with no back-
ground in formal verification. They have been quite useful: the linter
has found many bugs that testing missed, and circuit designers are
frequently using the equivalence checker to check their work.

1.2 The Right Language for the Job
We want it to be very easy to reuse ACL2 models and specifications
to develop useful, related applications for end-users outside of our
formal verification team. A basic question toward this goal is: what
programming language should we use to write these programs?

If the tool we want to write is, say, a simple command-line utility
that only needs to read some files and produce some output, then we
might just use ACL2 itself as the programming language. This makes
it trivial to reuse functions in our formal model.

Unfortunately, ACL2 is a poor platform for developing almost any
other kind of program. For instance, it has very little support for
working with the file system, limited multi-threading, no networking
support, and no graphical interface. It also has no libraries for gen-
erating parsers, connecting to databases, working with widely-used
data formats like JSON, XML, or YAML, and so on.

Instead, we might write our program in Common Lisp. The ACL2
system itself is a Common Lisp program, and ACL2 models and
specifications are compiled into Lisp functions, so it is easy to call
ACL2 functions from Lisp. Using Lisp also makes up for some of
the deficiencies of ACL2 as our development platform, e.g., Clozure
Common Lisp (CCL) has nice threading and networking support.

But frankly, Lisp is a niche language. It lacks the depth of mod-
ern, actively developed, well-documented libraries and frameworks
enjoyed by mainstream languages. When development time and cost
are at a premium, this may limit the kinds of tools we can develop.
Using Lisp can also be deterrent to working with developers from
other groups since usually they don’t know the language.

What we really want, then, is a good way to embed ACL2 mod-
els into programs written in other languages—say Ruby, Java, or
Python—that are widely known and have plentiful libraries to sup-
port working with files, graphics, networks, threads, databases, and
so forth. Ideally, we should be able to choose whatever language we
think is the best fit for the kind of application we want to develop,
and then incorporate our ACL2 models into this language.

This leaves us with a practical problem: how can we effectively
integrate ACL2 models into programs written in other languages?

1.3 Contributions
This paper describes the ACL2 Bridge, which solves this problem in
a general way.

We extend ACL2 with an ACL2 Bridge server that accepts con-
nections from client programs. Clients may be local or remote, and
may be written in any practical language. Each client interacts with
ACL2 through a kind of read-eval-print loop. Multiple clients can
simultaneously interact with the same ACL2 instance. (Section 2).

We describe a Ruby interface to the ACL2 Bridge. We show how a
client program can abstract away the details of communicating with
the server. Our Ruby interface can execute ACL2 commands in an
atomic style. It turns Lisp errors into proper Ruby exceptions, and

allows output from ACL2 commands to be streamed as it is pro-
duced or collected for analysis. We show how to translate between
Ruby and ACL2 data structures. These approaches can be followed
to develop clients in other programming languages. (Section 3).

We give a concrete example of a real, end-user program based
on the ACL2 Bridge. VL-Mangle is a web-based Verilog refactor-
ing tool. It makes use of a large (100,000+ line) ACL2 codebase
for Verilog parsing and transformation. A hardware designer with
no knowledge of ACL2 can use the tool, through an attractive GUI,
to manipulate sets of Verilog hardware designs and ensure that his
changes are correct. (Section 4).

2 THE ACL2 BRIDGE
The ACL2 Bridge works by extending an ACL2 with a server that
can respond to client programs. The server code can be loaded with

(include-book "centaur/bridge/top" :dir :system)

Afterward, a server can be started with the bridge::start com-
mand. The server listens for connections on a socket. If clients will
be run on the same machine, we can listen on a Unix domain socket,
which provides some security. For this, we just give the file name for
the socket, e.g.,

(bridge::start "./my-socket")

To support clients on different machines, TCP sockets can be used
instead. For this, we just give the port number to use, e.g.,

(bridge::start 13721)

But TCP sockets have security risks. Any client that can connect to
the Bridge can execute arbitrary Lisp commands, including, for in-
stance, running arbitrary programs via system calls. The Bridge has
no authentication or encryption mechanisms, so you should never run
it on a TCP socket without appropriate firewalls.

2.1 Soundness Considerations
Normally, ACL2 books introduce some new logical definitions and
prove some theorems, but they do not alter the actual code of the
ACL2 system. Unless there is some kind of bug in ACL2 itself, load-
ing a book is sound, i.e., it will not allow ACL2 to say it has proved
formulas that are not theorems.

The ACL2 Bridge book, however, necessarily extends ACL2 with
Common Lisp code for capturing output, starting threads, dealing
with sockets, and so forth. Once a server has started, its clients will
be allowed to run arbitrary Lisp commands. There are no protections
to prevent clients from unsoundly tampering with ACL2’s state, e.g.,
a client could add bad formulas as axioms.

Because of this, loading the Bridge book “infects” ACL2 with a
trust tag. In short: any ACL2 proofs carried out after the Bridge book
is loaded are marked as less trustworthy.

Fortunately, this Common Lisp code is only necessary when you
want to start a server and allow clients to connect. To avoid any
soundness concerns, our recommended approach (Figure 1) is to not
even include the Bridge book during the formal verification effort;
the Bridge should only be loaded in the derived application.

It is easy to imagine also using the Bridge to help formal veri-
fication engineers develop ACL2 proofs, e.g., by writing graphical
tools that make it easier to understand what the prover is doing. It



����
�����	


�����������
��������	�������	
�������	��

����������
������	����
�	������������

�	�������	�
��������	���
���������

���������

����������	
	���	�

����������	���	�

���������	��

����������	

����	�

Figure 1. Typical Soundness Approach

should be similarly easy to separate the ACL2 Bridge and such a tool
from the formal verification effort. That is, the tool could be used
while the proof is being developed, but not when the proof is certi-
fied (checked).

2.2 Communication
When a client program connects to the ACL2 Bridge, the server’s
listener thread creates a new worker thread to process its requests.
The worker thread provides the client with a kind of read-eval-print
loop for executing commands.

At the lowest level, all communication between a worker and its
client is carried out using a simple message format which is meant to
be easy to produce and parse in any language. In short:

type len\n
contents\n

To be more precise:

• type is a label that matches [A-Z][A-Z0-9 ]* and describes
what kind of message this is,

• len matches [0-9]+ and says how many bytes are in contents so
that no escaping is necessary,

• contents are arbitrary bytes of length len which are the main part
of the message,

• exactly one space separates type and len , and
• \n represents the newline character.

Upon startup, the worker sends the client a HELLO message with
its own thread-name as the contents. (Some clients might want to
remember the name of their worker to implement interrupts.) Then,
the work loop begins. The loop has four steps:

Ready. The worker sends an empty READY message to indicate it
is ready for a command. It then awaits input from the client.

Read. The client sends a command message to the worker. The
type of this command can vary, and governs how the return value
will be encoded (Section 2.3). The contents should always contain a
single Lisp command (an S-expression) for the worker to evaluate.

Eval. If the command is well-formed, the worker runs it. During
execution, the worker sends the client STDOUT messages with any
printed output. These messages are sent as they are generated. A
client might choose to display these messages to the end-user as they
become available, or to collect them, or to ignore them.

Print. If the command completes successfully, the worker sends a
RETURN message with the return value, encoded as requested by the
client’s command. In case of any run-time error, an ERROR message
containing a description of the problem is sent, instead.

After sending the RETURN or ERROR message, the loop starts over
again with a new READY message. The client continues to interact
with the same worker until it disconnects.

2.3 Result Encoding

The ACL2 Bridge is intended to make it easy to embed ACL2 models
into programs written in other languages. An important part of this
is to allow the client to understand return values as proper objects in
the client’s programming language, not just as text.

In ACL2 and Lisp, objects are printed as S-expressions [21]. There
is nothing especially bad about S-expressions, but they are not very
popular and few programming languages have a standard library for
parsing them. Because of this, if we want to write a client program
that does something interesting with an ACL2 return value—say vi-
sualize some ACL2 structures, or compare our ACL2 model’s an-
swers against those from a hardware simulator—we would first need
to write an S-expression parser.

While this would not be too bad, a much more convenient alterna-
tive is to have the Bridge encode return values in JSON [9] format.
JSON libraries are readily available for any major programming lan-
guage, and can be especially easy to use. To tie into these facilities,
we added a JSON encoder for ACL2 objects to the server.

Clients can choose what kind of encoding should be used for the
RETURNmessage on a per-command basis. The choice is just encoded
into the command message type. We have four command types. The
suffix MV here means “multiple values.”

Command Type Result Format
LISP First return value as an S-expression
LISP MV List of all return values as an S-expressions
JSON First return value as JSON text
JSON MV List of all return values as JSON text

Dealing with encoding on the ACL2 side, rather than on the client-
side, makes each encoding available to clients from all programming
languages. We might add other encoding options in the future.

3 A RUBY CLIENT

With the ACL2 Bridge server in place, how much work is it to
connect ACL2 to another programming language? To see, we now
walk through a Ruby client to the ACL2 Bridge. We first develop an
ACL2Bridge class that deals with all aspects of messages and the
work loop (Section 3.1). We then develop a mechanism for easily
translating structured data between the two languages (Section 3.2).

3.1 Client-Side Communication

The ACL2Bridge class contains the actual socket and deals with
the low-level aspects of communication. Its constructor establishes
a connection to the ACL2 Bridge server. Its lowest-level routines im-
plement our message scheme:

• send command(type, cmd) sends the ACL2 server a message
with the given type and with cmd as the contents.



• read message() parses the next message from the server. It re-
turns the type and content for a valid message, or throws an ex-
ception for a malformed message.

Higher-level routines bundle up the details of the read-eval-print
loop to make it straightforward to just execute a command and get
the result as a single step. A nice function is:

raw command(type, cmd, stream=nil)

The syntax stream=nil means the stream argument is optional,
and defaults to nil when omitted. What does this function do?

• It calls send command(type, cmd) to send the command to the
server.

• It reads messages from the server until a READY message is en-
countered. As each message is read, if an output stream (any
object with a << method) has been provided, any STDOUT mes-
sages will be forwarded to this stream. This is useful for long-
running ACL2 commands that print progress messages; you can
show these messages to the user as they are generated, instead of
having to wait for the command to complete.

• After READY has been read, it checks whether any ERROR mes-
sage was encountered. If so, it throws the error as an exception. It
then ensures that a RETURN message was encountered or throws an
exception. Finally, it returns the contents of the RETURN message
(i.e., the result of executing the ACL2 command, encoding accord-
ing to type), and the concatenation of all STDOUT messages.

This sort of wrapper is very convenient when writing an end-user
application. Instead of using raw command directly, we usually use:

json command(cmd, stream=nil),

a simple wrapper that calls raw command with JSON as the command
type, and then bundles up the result and all of the standard output into
a single, JSON-encoded string.

Altogether the ACL2Bridge class comes to only 250 lines (of
which 140 are blank or comments). It bundles up the details of mes-
sages and the work loop so that the client application simply submits
commands and gets back the results and printed output. It converts
any communication errors or ACL2-level errors into real Ruby ex-
ceptions, which can be caught and dealt with at the appropriate level
of the client application. Porting this code from Ruby to other lan-
guages like Java, Python, C#, etc., would be quite easy.

3.2 Data Translation
The ACL2Bridge class abstracts away the message scheme and work
loop, but still leaves us with an interface that is entirely string based.
That is, the commands we send to the server need to be strings con-
taining S-expressions. Likewise, the replies we get back are strings
that contain printed S-expressions or JSON text.

Strings are fine in limited cases, but they are not a good represen-
tation for structured data. What we would ideally like, instead, is an
easy way to translate between Ruby structures and ACL2 objects.

From Ruby to S-Expressions. Ruby has many kinds of objects. It
makes sense to translate some of these (integers, symbols, arrays of
strings, . . .) into ACL2 objects. But for other kinds of Ruby objects
(functions, sockets, its garbage collector, its Math package, . . .) there
is no sensible equivalent.

An especially nice translation from sensible Ruby objects into
S-expressions can be implemented using Ruby’s duck-typing and
monkey-patching features.

• We start by extending (monkey patching) classes like Integer

and String with a to lisp method.
• We then similarly extend classes like Array and Hash with

to lisp methods that build suitable S-expressions using the
to lisp methods of their elements (duck typing). With just this,
we can convert arrays/hashes whose elements are basic types, sub-
arrays/hashes of basic types, etc., into S-expressions.

• As we write new Ruby classes for our application, we can add
them to our translation scheme just by defining a to lispmethod.
This immediately extends to arrays and hashes that contain these
new objects.

This approach would not be directly portable to more strict lan-
guages like Java. In such a language, you might instead have a class
with encoders for basic types, and use a LispEncodable interface
with a toLisp function for new classes.

From ACL2 to Ruby Objects. In the other direction, we would
like a way to convert ACL2 replies into Ruby objects. Using JSON
encoding makes this particularly easy: in Ruby, we can convert some
JSON-encoded string, text, into a native Ruby object, obj, like this:

obj = JSON.parse(text)

This approach works well for basic structures involving lists, al-
ists, etc., but is not suitable for all ACL2 objects. For instance, if our
data is represented as some special cons-tree, its JSON representa-
tion may end up being an bizarre nesting of two-element arrays. In
these cases, it may be best to write a custom encoding function in
ACL2, and explicitly run the encoder in your Lisp command.

4 EXAMPLE APPLICATION: VL-MANGLE
Connecting ACL2 to other languages lets us reuse a formal ACL2
codebase to develop modern applications for end-users beyond the
formal verification group. As a concrete example, we have used the
ACL2 Bridge to develop a web-based Verilog refactoring tool called
VL-Mangle. VL-Mangle allows a hardware designer to mechanically
transform sets of Verilog modules in certain ways. For instance, it can
be used to:

• Inline away all uses of particular modules,
• Rewrite gate-level constructs into assignment statements,
• Remove excessive intermediate wiring,
• Eliminate unused wires and unnecessary expressions,
• Perform basic logical simplifications,
• Merge bidirectionally connected wires into a single wire, and
• Vectorize compatible sets of assignments.

These sorts of edits are tedious and error-prone to carry out on a large
scale by hand. To support a particular design effort, we wanted a tool
that hardware designers could use to automate these tasks.

A high-level picture of VL-Mangle’s architecture is shown in Fig-
ure 2. The backend is written in ACL2. It reuses VL, our large
(100,000+ line) ACL2 codebase for Verilog parsing and transforma-
tion. VL was originally developed to support our formal verification
effort. To prove anything about our processor’s modules (which are
written in Verilog) we first needed a way to model these modules
in ACL2, so we developed a parser and then translation code. Since
then, we have significantly extended VL and used it to develop vari-
ous command-line tools like a linter and equivalence checker.

The frontend of VL-Mangle is a web application written in the
Ruby framework Sinatra [29] on the server side, and a typical mix



Figure 2. VL-Mangle Architecture

of HTML, CSS, Javascript/JQuery for the client. The end-user inter-
acts with the tool using a graphical interface within his web browser.
To give you a sense of the user experience, some screenshots of are
shown in Figure 3.

4.1 VL-Mangle Architecture

The frontend follows the Model-View-Controller (MVC) [7] design
pattern. In brief, this means it is divided into three parts. The Model
includes the actual data and the ways of operating on this data. The
Views are responsible for displaying data from the model to the user.
The Controller is responsible for interpreting user input and translat-
ing it into operations on the model.

This architecture is very typical for web applications. In fact, there
is almost nothing to say about our views and controller except that
they are entirely conventional. Our controller is written using the
Sinatra framework for routing and forms handling. Our views use
libraries like HAML, Sass, and JQuery. All of this is separate from
ACL2 except that we reuse some of the VL library’s routines for
pretty-printing Verilog modules.

The model is more interesting. Typical web applications might use
an SQL database to hold their data. In VL-Mangle, most of the model
is implemented within the ACL2 backend. The frontend, however,
hides this behind a Ruby Model class that also regards certain files
on a shared networked file system (NFS) as part of the model.

The ACL2 Backend. We think of the entire ACL2 backend as
part of VL-Mangle’s Model. The backend represents almost all of
our application’s data using ordinary ACL2 data structures. We reuse
the Verilog representation from the VL library. The most interesting
other data structures are frames and the global state.

A frame contains a list of Verilog modules and some other in-
formation. Each kind of automated edit (e.g., “inline modules”) is
implemented as a frame transformation. That is, given some starting

frame, it produces a new frame that has updated modules. These are
just ordinary ACL2 functions.

The global state has two stacks of frames: an undo stack and a
redo stack. The top frame on the undo stack is the current frame.
Basic undo and redo support is simple: to undo we move a frame
from the undo stack to the redo stack; to redo we do the reverse.

Since the state is an ordinary ACL2 object, it is easy to implement
progress saving/reloading that preserves the full undo/redo history.
Interestingly, none of this code needs to involve the ACL2 Bridge;
we only need the Bridge when we want to connect our ACL2 model
to the Ruby web application.

The Ruby Model Class. To connect the ACL2 model to our web
application, we load the ACL2 Bridge book on the ACL2 side and
load our Ruby ACL2Bridge class, S-expression encoding code, and
the Ruby JSON library on the Ruby side.

Instead of exposing the ACL2Bridge instance to the rest of the
Ruby application, we keep it within a Model class. In some ways
this feels like overkill: there’s not much to this class, and it might be
simpler to just do without it. On the other hand, there are some nice
features of this approach.

Having a Model class in Ruby allows us to treat data outside of
ACL2 as part of the model. Our main use of this in VL-Mangle is
for equivalence checking. To make equivalence checking faster, we
set up a separate job to check each module, and run these jobs on
a cluster. The VL-Mangle interface lets the user see the progress of
these jobs and inspect failures. The data for these views are the log
files from the equivalence checking tool. From an MVC perspective,
then, it makes sense to regard these log files as part of the model. (Ap-
plications other than VL-Mangle might also want to consider various
non-ACL2 resources like databases as part of their model.)

Another advantage of having a Model class is that it makes
caching ACL2 queries quite easy. A particular view might be as-
sembled out of independent parts. These different parts might each
need to know, say, what the current module names are. We could just



(a) The workbench shows the user the current versions of his modules,
and lets him compare them with previous versions.

(b) Tool pages let the user transform sets of modules in various ways.

(c) The user can run equivalence checks on a cluster of machines to
ensure his edits are behavior-preserving.

Figure 3. VL-Mangle Screenshots

separately query the Bridge each time we need to answer a question
like this, but that is not very efficient since each query requires a
round-trip to the ACL2 backend. Since the answer to this questions
won’t change during a single page load, a simple improvement is to
cache the answers in the Model class so that we only need to consult
ACL2 once, for the first query. In the particular case of VL-Mangle,
this caching isn’t necessary or important—we normally have a single
user interacting with a single backend and performance is just not an
issue—but for applications other than VL-Mangle, caching might be
useful.

4.2 Connecting ACL2 to the Web
A very nice part of this whole system is just how easy it is to transfer
input from HTML forms to the ACL2 backend and work with ACL2
replies. The user enters their input into ordinary HTML forms, with
input names like this:

<input name="clean[parameters]" ... />
<input name="clean[wires]" ... />
<input name="clean[assigns]" ... />

Using the Sinatra framework, the corresponding handler in our con-
troller can refer to params[:clean], a Ruby hash that binds input
names to their values. This makes it trivial to send these inputs di-
rectly to our Ruby Model instance:

reply = @model.clean(params[:clean], out)

The model just converts the arguments into an S-expression and runs
the corresponding ACL2 command:

class Model
...
def clean(args, out)
@bridge.json_command(
"(mpost-clean ’#{args.to_lisp})", out)

end
end

When we want to add new options and arguments to the cleaning
transform, we can just extend the HTML form and its ACL2 imple-
mentation, without any changes to the Ruby model or controller.

Implementing an API for use in AJAX queries is also very simple.
For instance, in the Ruby Model class we have a method to query
ACL2 for the current module names.

class Model
...
def get_modnames_json()
@bridge.json_command("(mget-modnames)")

end
...

end

Since get modnames json is already returning JSON-encoded
data, we can just send this string directly to the web browser to re-
spond to AJAX requests. All that is needed is an appropriate route in
our controller. In Sinatra, this is just:

get "/get_modnames" do
connect
content_type :json
@model.get_modnames_json

end



4.3 Threading Considerations

Most ACL2 functions can be thought of as pure, functional programs
with no side-effects. These functions are especially well-behaved and
no special care needs to be taken to make them thread-safe.

But not everything in ACL2 is pure. For greater execution effi-
ciency, ACL2 models can also make use of certain non-pure idioms.
For instance, they can use “single-threaded objects” that are updated
destructively. At Centaur we actually use ACL2(h) [6], an extended
version of ACL2 with hash-consing and memoization features. Un-
fortunately, its implementation of memoization is not thread-safe,
and its implementation of hash-consing is most efficient when only a
single thread is creating new hash-conses.

These sorts of features pose challenges when we are developing
a multi-client applications where each client is served by a separate
worker thread. Two clients might, for instance, simultaneously try to
update the same single-threaded object, or both make use of memo-
ized computations. The bridge does not do any automatic locking, so
when we develop client programs, we must be aware of these issues
and add the appropriate protections.

As a blunt solution, the Bridge does have a special “main thread”
feature which is especially useful in the context of ACL2(h). In short:
any computation can be wrapped in in-main-thread to ensure that
it is run only by the main thread. This has the obvious disadvantage
that a client may need to wait until the main thread becomes avail-
able. Another command, try-in-main-thread, is similar but just
fails immediately if the main thread is not available. In VL-Mangle,
we use this as our main locking mechanism.

5 OTHER APPROACHES

Getting separate programming languages to work together is a well-
fought problem. Depending on the kinds of languages involved, we
might combine the codebases into a single program by developing a
foreign-function interface (FFI) or by sharing a multi-language plat-
form like the Java Virtual Machine (JVM) or the Common Language
Runtime (CLR). Alternately, we might keep the separate codebases
as independent programs that simply process each others’ files, or
that communicate over pipes or sockets using anything from mes-
sages to elaborate protocols like COM and CORBA. Some of these
approaches could perhaps be used, instead of the ACL2 Bridge, to
connect ACL2 to other languages.

Common Lisp implementations like CCL and SBCL have for-
eign function interfaces that can call C functions from Common Lisp
code, which could provide access to libraries for graphical interfaces,
databases, etc. This can be particularly efficient. Calls through the
ACL2 bridge have some communication overhead: the server con-
verts return values into S-expressions or JSON representations, and
the client generally has to parse this text into a sensible object. With
an FFI, you may be able to directly construct or modify structures of
interest in memory, without any parsing or printing. Unfortunately,
while an FFI usually makes it reasonable to interface with C, con-
necting to higher-level languages like Java or Ruby is more difficult.

ACL2 does not run on any Common Lisp implementation that tar-
gets a platform like the JVM or CLR. However, there is at least one
Common Lisp implementation on the JVM (ABCL) and languages
like Clojure are similar to Lisp. Porting ACL2 to these platforms
might open up interesting ways to connect it to the other languages
that also run on the JVM, but would be a significant undertaking.

Instead of using separate programs that communicate in a cooper-
ative way over a socket, we could perhaps use a pipe to run ACL2

as a sub-process and capture its standard input/output streams. This
approach is used in the ACL2 Sedan [11], an Eclipse-based IDE for
ACL2. This approach avoids the need to extend ACL2 with a server,
which is nice since socket/threading code is not standard across Lisp
implementations. Unfortunately, there are many practical difficulties
for the client. The client must deal with invoking the process and cap-
turing its streams, which is difficult in some programming languages.
It must invent some way to tell when ACL2 is ready for more input,
and to distinguish between output, return values, and error messages
that are all printed to a single output stream. This approach is also
limited to a single client, interacting with ACL2 via a single thread,
on the same machine.

6 CONCLUSIONS
The ACL2 Bridge provides a straightforward way to embed formal
ACL2 models and specifications into software written in any main-
stream language. This allows us to reuse the work of formally model-
ing and specifying artifacts to develop full-featured applications that
can be valuable beyond the verification team.

6.1 Related Work
In closely related work, Greve, Hardin, and Wilding [12, 14] explain
how they have developed formal processor models that can be ex-
ecuted efficiently. This allows the formal model to be reused as a
traditional processor simulator.

A unique reuse of executable formal hardware models is described
by Albin, Brock, and Hunt [1]. They have reused a formal model
of the FM9001 processor for post-fabrication testing. Test programs
were run on the actual FM9001 chip while it was attached to a logic
analyzer that recorded the values of its interfacing pins. These values
were then compared against a gate-level formal model of the hard-
ware design to show the physical device was behaving correctly.

To reuse formal models in other software, we need to be able to ex-
ecute the formal model. ACL2 is unusual among theorem provers in
that its logical definitions (i.e., for formal models and specifications)
are directly executable as Common Lisp functions. In many other
systems, logical definitions are often developed using, e.g., quanti-
fiers, predicates, and relations that are not directly executable.

Even so, many provers have a mechanism for executing models.
The Coq [5] system features a program extraction [19] capability
that can translate subsets of Coq into OCaml programs. This capa-
bility has been used to develop some impressive standalone appli-
cations. For instance, Leroy [18] describes CompCert, a formally
verified C compiler; Koprowski and Binsztok [17] present TRX, a
verified parser generator. In each case, the programs extracted from
these Coq developments could be useful to a wide audience.

A similar mechanism [3] for translating Isabelle/HOL specifica-
tions into ML has been used by Berghofer and Strecker [4] to create
a verified compiler for a simplified Java. (It also has other uses within
the theorem prover, e.g., Chaieb and Nipkow [8] have developed ver-
ified proof procedures for more efficient arithmetic reasoning.)

Similar to program extraction are schemes to animate [22] formal
models in languages like Z and B, e.g., by translation into Prolog
programs. Animation is ordinarily used to build confidence in the
formal model by allowing it to be tested on examples. We are not
aware of applications based on these animated models, but the ability
to execute the model may serve as a useful step in this direction.

Less closely related, there are many cases where theorem provers
have been connected to external programs like SAT solvers[28, 10],



SMT solvers [2], symbolic algebra systems [15], and so on, which
are usually written in languages like C or C++. These efforts allow
formal verification engineers to automatically prove certain kinds of
goals, but are not aimed at reusing formal models in applications.

6.2 Availability

The ACL2 Bridge, including for both the server-side ACL2 source
code described in Section 2 and the Ruby client described in Section
3, is freely available under the GNU General Public License. It is
included in the ACL2 Community Books for ACL2 6.0,

http://acl2-books.googlecode.com/,

under books/centaur/bridge. The Verilog library used in VL-
Mangle, including parsing and many transformations, are also avail-
able under books/centaur/vl. However, the VL-Mangle web
frontend is not publicly available.

ACKNOWLEDGEMENTS

I thank Scott Peterson and Patrick Roberts for very helpful conver-
sations about web application development. I thank Sol Swords for
his help to integrate equivalence checking into VL-Mangle. I thank
Anna Slobadová, Sol Swords, and the anonymous reviewers for their
helpful feedback on drafts of this paper.

REFERENCES
[1] Kenneth L. Albin, Bishop C. Brock, Warren A. Hunt, Jr., and

Lawrence M. Smith, ‘Testing the FM9001 microprocessor’, Technical
Report 90, Computational Logic, Inc., (January 1995).

[2] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller,
Laurent Théry, and Benjamin Werner, ‘Verifying SAT and SMT in Coq
for a fully automated decision procedure’, in PSATTT ’11, (2011).

[3] Stefan Berghofer and Tobias Nipkow, ‘Executing higher order logic’,
in Types for Proofs and Programs (TYPES), volume 2277 of LNCS, pp.
24–40. Springer, (2002).

[4] Stefan Berghofer and Martin Strecker, ‘Extracting a formally verified,
fully executable compiler from a proof assistant’, in Compiler Opti-
mization Meets Compiler Verification (COCV), volume 82 of Electronic
Notes in Theoretical Computer Science, (2003).

[5] Yves Bertot and Pierre Castéran, Interactive Theorem Proving and Pro-
gram Development: Coq’Art: The Calculus of Inductive Constructions,
Texts in Theoretical Computer Science, Springer-Verlag, 2004.

[6] Robert S. Boyer and Warren A. Hunt, Jr., ‘Function memoization and
unique object representation for ACL2 functions’, in ACL2 ’06, pp. 81–
89. ACM, (August 2006).

[7] Steve Burbeck. Application programming in Smalltalk-80: How to
use Model-View-Controller (MVC). University of Illinois in Urbana-
Champaign Smalltalk Archive.
http://st-www.cs.illinois.edu/users/smarch/
st-docs/mvc.html, 1987. Accessed: January 2013.

[8] Amine Chaieb and Tobias Nipkow, ‘Verifying and reflecting quantifier
elimination for Presburger arithmetic’, in Logic Programming, Artifi-
cial Intelligence, and Reasoning (LPAR ’05), volume 3835 of LNCS,
pp. 367–380. Springer-Verlag, (2005).

[9] Douglas Crockford. JSON: The fat-free alternative to XML.
http://www.json.org/fatfree.html, December 2006. Ac-
cessed: January 2013.

[10] Ashish Darbari, Bernd Fischer, and João Marques-Silva, ‘Industrial-
strength certified SAT solving through verified SAT proof checking’, in
ICTAC ’10, volume 6255 of LNCS, pp. 260–274. Springer, (2010).

[11] Peter C. Dillinger, Panagiotis Manolios, J Moore, and Daron Vroon,
‘ACL2s: The ACL2 Sedan’, in 7th Workshop on User Interfaces for
Theorem Proving (UITP), volume 172 of Electronic Notes in Theoreti-
cal Computer Science, pp. 3–18. Elsevier, (2006).

[12] David Greve, Matthew Wilding, and David Hardin, ‘High-speed, ana-
lyzable simulators’, in Computer Aided Reasoning: ACL2 Case Studies,
eds., Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, 89–
106, Kluwer, (2000).

[13] David A. Greve, Matt Kaufmann, Panagiotis Manolios, J Strother
Moore, Sandip Ray, José Ruiz-Reina, Rob Sumners, Daron Vroon, and
Matthew Wilding, ‘Efficient execution in an automated reasoning envi-
ronment’, Journal of Functional Programming, 18(1), (January 2008).

[14] David Hardin, Matthew Wilding, and David Greve, ‘Transforming the
theorem prover into a digital design tool: From concept car to off-road
vehicle’, in Computer Aided Verification (CAV), volume 1427 of LNCS.
Springer, (1998).

[15] John Harrison and Laurent Théry, ‘A sceptic’s approach to combin-
ing HOL and Maple’, Journal of Automated Reasoning, 21, 279–294,
(1998).

[16] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore,
Computer-Aided Reasoning: An Approach, Kluwer Academic Publish-
ers, June 2000.

[17] Adam Koprowski and Henri Binsztok, ‘TRX: A formally verified parser
interpreter’, Logical Methods in Computer Science, 7, 1–26, (June
2011).

[18] Xavier Leroy, ‘Formal verification of a realistic compiler’, Communi-
cations of the ACM, 52(7), 107–115, (2009).

[19] Pierre Letouzey, ‘Extraction in Coq: An overview’, in 4th Conference
on Computability in Europe (CiE), volume 5028 of LNCS, (2008).

[20] Hanbing Liu, Formal Specification and Verification of a JVM and its
Bytecode Verifier, Ph.D. dissertation, University of Texas at Austin,
2006.

[21] John McCarthy, ‘Recursive functions of symbolic expressions and their
computation by machine, part 1’, Communications of the ACM, 3(4),
184–195, (April 1960).

[22] Tim Miller and Paul Strooper, ‘Animation can show only the presence
of errors, never their absence’, in 13th Australian Software Engineering
Conference (ASWEC), pp. 76–85, (2001).

[23] Lee Pike, Mark Shields, and John Matthews, ‘A verifying core for
a cryptographic language compiler’, in 6th International Workshop
on the ACL2 Theorem Prover and its Applications (ACL2), pp. 1–10.
ACM, (2006).

[24] Raymond J. Richards, ‘Modeling and security analysis of a commercial
real-time operating system kernel’, in Design and Verification of Mi-
croprocessor Systems for High-Assurance Applications, ed., David S.
Hardin, Springer, (2010).

[25] David Russinoff, Matt Kaufmann, Eric Smith, and Robert Sumners,
‘Formal verification of floating-point RTL at AMD using the ACL2 the-
orem prover’, in 17th IMACS World Congress: Scientific Computation,
Applied Mathematics and Simulation, (July 2005).

[26] Jun Sawada and Erik Reeber, ‘ACL2SIX: A hint used to integrate a
theorem prover and an automated verification tool’, in Formal Methods
in Computer-Aided Design (FMCAD), pp. 161–170. IEEE, (2006).

[27] Anna Slobadová, Jared Davis, Sol Swords, and Warren A Hunt, Jr., ‘A
flexible formal verification framework for industrial scale validation’,
in Formal Methods and Models for Codesign (MemoCode), pp. 89–97.
IEEE, (July 2011).

[28] Tjark Weber and Hasan Amjad, ‘Efficiently checking propositional
refutations in HOL theorem provers’, Journal of Applied Logic, 7(1),
26–40, (March 2009).

[29] Adam Wiggins and Blake Mizerany. Lightweight web services.
RubyConf 2008.
http://rubyconf2008.confreaks.com/
lightweight-web-services.html, November 2008.

[30] Matthew M. Wilding, David A. Greve, Raymond J. Richards, and
David S. Hardin, ‘Formal verification of partition management for the
AAMP7G microprocessor’, in Design and Verification of Microproces-
sor Systems for High-Assurance Applications, ed., David S. Hardin,
Springer, (2010).

http://acl2-books.googlecode.com/
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://www.json.org/fatfree.html
http://rubyconf2008.confreaks.com/lightweight-web-services.html
http://rubyconf2008.confreaks.com/lightweight-web-services.html

	INTRODUCTION
	Reusing Formal Models and Specifications
	The Right Language for the Job
	Contributions

	THE ACL2 BRIDGE
	Soundness Considerations
	Communication
	Result Encoding

	A RUBY CLIENT
	Client-Side Communication
	Data Translation

	EXAMPLE APPLICATION: VL-MANGLE
	VL-Mangle Architecture
	Connecting ACL2 to the Web
	Threading Considerations

	OTHER APPROACHES
	CONCLUSIONS
	Related Work
	Availability


