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Abstract. Despite significant progress in formal hardware verification
in the past decade, little has been published on the verification of mi-
crocode. Microcode is the heart of every microprocessor and is one of
the most complex parts of the design: it is tightly connected to the huge
machine state, written in an assembly-like language that has no support
for data or control structures, and has little documentation and chang-
ing semantics. At the same time it plays a crucial role in the way the
processor works.
We describe the method of formal microcode verification we have de-
veloped for an x86-64 microprocessor designed at Centaur Technology.
While the previous work on high and low level code verification is based
on an unverified abstract machine model, our approach is tightly con-
nected with our effort to verify the register-transfer level implementation
of the hardware. The same microoperation specifications developed to
verify implementation of the execution units are used to define opera-
tional semantics for the microcode verification.
While the techniques used in the described verification effort are not
inherently new, to our knowledge, our effort is the first interconnection
of hardware and microcode verification in context of an industrial size
design. Both our hardware and microcode verifications are done within
the same verification framework.

1 Introduction

Microprocessor design is a complex effort that takes hundreds of man-years.
Verification of the microprocessor design remains the bottleneck of the design
process. It consumes an increasing amount of resources and deploys more and
more sophisticated methods including high-performance simulators and formal
technology. There are many aspects to verifying the correctness of a micropro-
cessor based system. In this paper, we will discuss only functional verification.
Most of the papers about microprocessor verification are solely concerned with
the verification of hardware. We will focus on the verification of microcode which
is the heart and soul of a microprocessor.

While the external interface to a microprocessor is mandated by its Instruc-
tion Set Architecture (ISA), its internal behavior is governed by some processor-
specific microarchitecture. For instance, contemporary x86 processors externally



support a wealth of instructions, sizes, and modes that take thousands of pages
to describe (see Intel R©64 and IA32 Architecture Software Developer Manuals).
For performance reasons, implementations of modern x86 processors have a fron-
tend that translates x86 instructions into simpler microoperations (uops), and
a backend for executing these uops (Figure 1). Microcode (ucode) bridges the
external world of Complex Instruction Set Computing and the internal world of
Reduced Instruction Set Computing.

Fig. 1. Processor Backend: uops from the front-end are renamed, placed into the re-
order buffer, and given to the reservation station of the appropriate execution unit.
Each uop executes once its unit and operands become available. Results are forwarded
among the execution units and also sent back to the reorder buffer, where they remain
until retirement.

While simple and common x86 instructions are often translated into a single
uop, more complex or obscure operations are implemented as ucode programs
that are stored in a microcode ROM. Microcode programs are responsible for
many complex features that a processor provides, e.g., they are used to imple-
ment transcendental functions, hardware virtualization, processor initialization,
security features, and so on. Accordingly, their correctness is critical.



Unfortunately, there are many challenges to verifying microcode programs.
Microcode verification can be seen as an instance of hardware/software co-
verification, with all of the associated challenges. Whether using formal or testing-
based methods, validation involves understanding both the micro-architecture
and the microcode program, neither of which is easy.

Microcode is a very primitive, low-level language without even basic control
constructs or data structures. At the same time, ucode programs are designed for
efficiency rather than verification. During the design effort, not only are ucode
programs frequently updated, but the very microcode language is extended with
new operations and features. Even as the end of an effort nears and the hardware
design is frozen, ucode programs continue to change—indeed, ucode patches
become the preferred way of fixing bugs and adding or removing features.

The formal verification team at Centaur Technology applies formal meth-
ods to problems in various stages of the design process, including equivalence
checking of transistor level and Register-Transfer Level (RTL) designs. In the
area of the RTL verification, we have applied symbolic simulation supported
by SAT-based and BDD-based technology to verify execution of individual mi-
crooperations in assigned execution units [1–3]. All of this verification has been
carried out within the ACL2 system [4].

This paper presents our approach to formally verifying microcode routines
for a new x86-64 processor in development at Centaur Technology. Our methods
draw inspiration from the work of many published sources, but our work differs
from each of these works in one or more aspects listed below:

i Our target is microcode – a language below the ISA level;
ii Our verification is done on an industrial scale design – an implementation

of a fully x86-64 compatible microprocessor. In addition, it is done on a live
project that undergoes continuous changes on the specification and imple-
mentation levels.

iii Our formal model of the microarchitecture is based on the specifications
used in the RTL proofs. To our knowledge this is the first such interconnec-
tion of hardware and ucode verification done on a microarchitecture of such
complexity.

Section 2 describes our formal ACL2 model of the processor’s microarchitec-
tural state and uop execution semantics. Our model can be run as a high-speed
microcode simulator (around 250k uops/sec), and is also designed to achieve
good reasoning performance in the theorem prover.

Section 3 gives a sketch of our approach to verifying microoperation sequences
and loops, and how those can be composed to achieve correctness theorems
about parts of code that constitutes subroutines. The sequential composition of
the blocks is based on exploiting the power of the simplification engine within a
theorem prover.

Section 4 describes the degree to which our abstract machine model has been
proven to correspond to the actual hardware implementations. Parts of our model
are contrived, but significant parts are directly based on specification functions



that have a mechanically proven correspondence to the Verilog modules of our
processor.

Section 5 summarizes related work. Finally, Section 6 concludes the paper
with comments about our future work.

2 Microcode Modeling

Microcode originates as a text program. Figure 2 shows an example of a mi-
crocode program.

clr pram:

MVIG.S64 g0, 0; g0 = 0
clr loop:

STORE PRAM g0, ADR, 0; PRAM[ADR] = g0
ADDIG.S64 ADR, ADR, 8; ADR = ADR + 8
NLOOPE.S64 g8, 1, ret; g8--; if !g8 goto ret
JMP ALL clr loop; goto clr loop
ret:

JLINK ; return

Fig. 2. A microcode routine that zeroes an area of PRAM memory. Here g0 and g8 are
64-bit registers. ADR is an alias to the 64-bit register g9. Labels like clr pram, clr loop
and ret are resolved into ROM addresses by the assembler.

Figure 3 shows the relation between the model and hardware. An assembler
translates microcode program into a binary image which is stored on the chip in a
ROM. When executing microcode, the microtranslator unit fetches instructions
from the ROM and translates them into backend uops that are then executed.

Our model consists of four parts described in more details below:

– Microcode - a constant representing the entire ROM image.
– Microcode translator - a function that maps ROM instructions into back-

end uops, plus a ucode sequencing instruction that determines the control
flow after the uops’ execution.

– State - a data structure representing the microarchitectural state.
– Operational semantics for backend uops, defining their effects on the

state.

To build the microcode ROM, the source code files are collected and processed
by a microcode assembler. The assembler converts each instruction into its binary
encoding, producing a binary image that captures every ucode routine. When
the processor is manufactured, this image is embedded into its ucode ROM.
We extended the microcode assembler to produce, besides the ROM image and
other debugging and statistical information it already generated, a Lisp/ACL2
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Fig. 3. Connections between our model and the processor implementation.

model of the ucode listing which can be conveniently loaded into our verification
framework. This way, our model of the microcode program stays up-to-date as
microcode routines or the assembler itself are changed.

The microcode translator functionality is derived by means of symbolic sim-
ulation from the RTL design of the microtranslator unit. A mapping from inputs
representing a ROM instruction to outputs representing a sequence of backend
uops and control flow information is represented by a set of (Boolean) formulas.
For execution speed, we precompute a specialized version of these formulas for
each instruction in the ROM and store them into a hash table. Some instructions’
translations depend on the machine state (e.g. the current mode of operation), so
the specialization does not always yield a final, concrete result, but only simpler
formulas. In those cases, we finish the translation at execution time. To execute
a single ROM instruction, we look up that instruction’s specialized translation
formula and evaluate that formula by substituting in any relevant state bits. The
obtained sequence of uops and the control information is interpreted with respect
to defined semantics which determines the next state, including the value of the
program counter. Automatically deriving the micro-translator functionality from
the actual RTL keeps this part of the model up-to-date.

The machine state is represented as a tuple containing essential machine
variables such as the program counter, the stack, various sets of registers (e.g.,
the x86 general-purpose registers are in a field called gregs and the SSE media



registers are in mregs) and scratch memories. Parts of the state correspond to
registers defined by the x86 architecture, but much of it is specific to the concrete
micro-architecture of the project. A machine state may be a running, halting,
or divergent state, where a divergent state is used to represent the result of a
program that never terminates. These three types of states are distinguished by
the value of the program counter; a natural number indicates a running state.

We describe the effect of each uop as a transformation of the state, in the
usual interpreter semantics style. For instance, the effect of the XADD uop is
modeled by the function

xadd -def (uop, s)→ s ′,

where s and s ′ are current and transformed states, resp., and uop represents a
particular instance of a microoperation with all relevant information – operands,
operand size, flag information, unit where the uop is executed, etc.:

dest g9 src width 64 opcode XADD

src1 g8 dest width 64 exec unit int

src2 8 write flags? no

A function like xadd -def interprets this information, e.g., for the instruction
above it would extract the value of gregs[8] and interpret it as 64-bit value, add
it to src2, store the result in gregs[9], and not update any flags.
Semantic functions for all types of uops are combined into a universal uop defi-
nition:

µop-def (uop, s) def=
xadd -def (uop, s) if uop.type is XADD

xsub-def (uop, s) if uop.type is XSUB

. . . . . .
error(s) otherwise

To model the execution of consecutive steps from a state s, we use an ap-
proach by Ray and Moore [5, 6]. We first define the function run(n, s) which
returns the new state after executing n steps:

run(n, s) def=
{
s if n = 0
run(n− 1, step(s)) otherwise

Note that step executes one ROM instruction that can consist of several uops.
Its definition and connection to our hardware verification proofs are explained
in more detail in Section 4.

Finally, we can define run∗ : s → s, which runs the machine until it enters
a halting state. If the program does not terminate, then logically it returns the
divergent state ⊥ (whereas the actual execution of run∗ would never terminate).
This avoids the need to explicitly determine how many steps a program takes
and allows us to pursue partial correctness results without proving termination
(see run-measure in Section 3).

run∗(s) def=

 s if halting(s)
run∗(step(s)) if ¬divergent(s)
⊥ otherwise



The next section will explain how we reason about this model. Then, in
Section 4, we will explain the relationship between this model and the hardware
design.

3 Microcode Verification

Before describing our verification methodology, we need to explain our verifi-
cation objective. Unlike higher level languages, microcode does not have any
nice control structures like for loops, while loops, if-then-else constructs, etc,
and there is no such entity as a main program in microcode. It consists of a
sequence of micro operations residing in a ROM. Figure 2 shows an example
of a microcode snippet. Microoperations can move values between registers and
to/from scratch memory, and can manipulate values by means of arithmetic and
logical operations. Loops are implemented with conditional and unconditional
jumps. Microcode is written for efficiency and would not please the eye of any
programmer.

Our objective in microcode verification is to characterize the effect of exe-
cuting microcode from an entry point to an exit point on the machine state. In
order to do this, we incrementally verify blocks of code and compose the theo-
rems into theorems about larger blocks. We have defined a macro def-uc-block
that supports verification of a general block of code, and a macro def-uc-loop
that supports reasoning about loops.

3.1 def-uc-block

We use the def-uc-block macro to specify blocks of straight-line code and to
compose together previously defined blocks (including loops). The user specifies:

1. start-pc as an initial value for the program counter;
2. block -precondition as a state predicate;
3. run-block , a function that executes the machine model until the end of block

is reached. This may be a simple application of the universal run function
for a given number of steps, or as a combination of run and applications of
previously defined blocks.

4. block -specification that describes the machine state after execution of this
block (the post-state). This definition is in terms of updates to the start-
state. As a consequence, those parts of the state that remain unchanged are
left out of the description of the change. While we need to keep track of
the changing values in some registers and memories, other parts of the state
are used as temporary storage and become irrelevant for the final result. To
avoid precisely characterizing these don’t care values, we copy them from
the actual post-state (produced by run-block) into the specification state,
making their equivalence trivial. This is known as wormhole abstraction [7]).

For the code in Figure 2, the verification could start with the definition of
def-uc-block with the arguments described in Figure 4.



name: clr loop last
pc: get-label(clr loop)
run: run(4, s)

precondition: Let adr = s.gregs[9], cnt = s.gregs[8] in
addr -ok(adr) ∧ (cnt = 1) ∧
¬empty(s.retstack)

specification: Let adr = s.gregs[9], val = s.gregs[0] in {
s = pram-store(val , adr , s);
s.gregs[8] = 0;
s.gregs[9] = adr + 8;
return stack -pop(s);
}

Fig. 4. def-uc-block example (last run through the loop): get-label translates a label
into initial value of the program counter. Running the block takes 4 steps. In the
precondition, addr -ok identifies valid address to the PRAM memory. While g9 is used
as a pointer to memory, g8 is a counter that controls the loop. The loop terminates
when the counter clears. The specification describes the state update caused by the
last run through the loop: the value of g0 is stored in the PRAM at address specified
by g9, g8 is decremented, g9 is incremented by the size of the written entry, and the
program counter is set to the value on the top of the return stack.

The expansion of the macro defines all the functions above and automatically
proves some theorems about them. For instance, the run-block function has to
satisfy following properties:

R1: run∗(run-block(s)) = run∗(s)
applying run∗ to the post-state brings us to the same state as applying run∗

to the start state.
R2: halting(s) =⇒ run-block(s) = s

run-block will not advance from a halting state.
R3: divergent(s) =⇒ run-block(s) = ⊥

Whenever we get into a divergent state, we converge into the ⊥ state.
R4: ¬divergent(run∗(s)) =⇒ ¬divergent(run-block(s))

If run∗ terminates, then run-block terminates.
R5: run-block makes progress in the termination of run∗:

¬halting(s) ∧ ¬divergent(run-block(s))
=⇒
run-measure(run-block(s)) < run-measure(s)

where run-measure is a non-executable function whose value is the minimum
number of steps needed to bring the machine to a halting state, if that exists,
and zero otherwise. It is defined as a Skolem witnessing function using the
ACL2 feature defchoose.



R6: run-measure(run-block(s)) ≤ run-measure(s)
A weaker monotonic condition.

For the block -precondition predicate we have an option to do a simple vacuity
check. It exploits a symbolic simulator [8] that converts an ACL2 object that is
defined over a finite domain into a symbolic object encoded as an And-Inverter
Graph. Finding a state that satisfies the precondition is thus transformed into
satisfiability of a Boolean formula, which we then translate into CNF and solve
using an off-the-shelf SAT solver [9].

The main result of the def-uc-block expansion is the correctness theorem:

Theorem 1 (block-correct).

s.pc = start-pc ∧ block -precondition(s)
=⇒

run-block(s) = block -specification(s, run-block(s))

Theorem block-correct is the crucial point of the verification. We have two
distinct methods for proving this theorem for each block.

– We can use bit-level symbolic execution [8], which computes a Boolean for-
mula representing the correctness condition and attempts to solve it using
a SAT solver. This is preferred for short blocks whose correctness proofs do
not depend on much mathematics. This method is largely automatic (though
it can be tuned with rules that determine how to process certain functions),
and in many cases can either quickly prove the desired theorem or produce
a counterexample showing a difference between the spec and the actual be-
havior of the routine. However, this method suffers from capacity limitations
and is also difficult to debug in cases where a proof times out or otherwise
fails.

– We can use ACL2’s native proof engines, together with a litany of hints and
rules that optimize its behavior on this sort of problem. E.g., we instruct the
prover to only open the definition of run if the program counter of the state
can be determined.

Both methods support composition of blocks, and both also support wormhole
abstraction, obviating the need to specify and spend proof effort on don’t-care
fields of the state.

3.2 def-uc-loop

Although there is no explicit loop construct in the microcode, loops do appear in
the code in various forms. Macro def-uc-loop supports their verification. Through
the arguments to this macro, the user specifies:

1. start-pc, an initial value for the program counter
2. loop-precondition, a starting state predicate
3. loop-specification, the loop’s effect on the machine state



4. measure, a term used in the proof of termination of the loop (e.g, value of a
register that serves as a counter).

5. done, a condition (state predicate) that is satisfied upon entering the last
execution of the loop.

6. run-last , run function for the execution of the last time through the loop.
7. run-next , run function for the execution of any but the last time trough the

loop.

def-uc-loop also supports proving partial correctness for loops that may not ter-
minate; in these cases, the measure may be omitted.

Execution of a def-uc-loop is usually preceded by two executions of def-uc-
block that specify the effect of executing one round of the loop. In particular, the
two cases describe the run-last block (executed under the precondition done(s)∧
loop-precondition(s)) and the run-next block (under the precondition ¬done(s)∧
loop-precondition(s)). Figure 5 shows an example of def-uc-loop arguments for
the code on Figure 2.

Expansion of the macro defines a function run-loop that repeatedly executes
run-next until the done condition first holds, then finishes by executing run-last .
Properties R1–R6 are proved for run-loop, and the correctness theorem has
exactly the same form as the correctness theorem for def-uc-block:

Theorem 2 (loop-correct).

s.pc = start-pc ∧ loop-precondition(s)
=⇒

run-loop(s) = loop-specification(s, run-loop(s))

This theorem is proved using induction defined by the scheme of the run-loop
function and the two block-correct theorems for the run-next and run-last func-
tions. The proof may be done either using ACL2’s built-in proof engines or by
applying our bit-level proof engine separately to the base case and induction
step.

4 Hardware Connection

We would like our microcode model to be useful both for ad-hoc testing of
microcode routines and for carrying out formal proofs of correctness about these
routines. The closer the model is to the actual processor, the stronger the results
of tests and proofs. Figure 3 shows the corresponding parts of our model and the
processor implementation. Dark blue parts were proved to match dark orange
parts of the hardware model.

We derive our instruction listing from the same microcode assembler that
also produces the content of ROM, and we model the microcode decoder by
effectively simulating the RTL of Micro-translator, as described in Section 2.
Thus, our model of the translation from the text microcode into uops has a
strong connection to the real design of the processor’s frontend.



name: clr loop
pc: get-label(clr loop)
measure: s.gregs[8]
done: s.gregs[8] = 1
run-last: run-clr -loop-last(s)
run-next: run-clr -loop-next(s)

precondition: Let adr = s.gregs[9], cnt = s.gregs[8] in
addr -ok(adr · (cnt − 1)) ∧ (cnt > 0) ∧
¬empty(s.retstack)

specification: Let adr = s.gregs[9], val = s.gregs[0],
cnt = s.gregs[8], idx = adr ÷ 8 in {

s = clr -pram-k(idx , idx + cnt , val , s);
s.gregs[8] = 0;
s.gregs[9] = adr + 8 · cnt ;
return stack -pop(s);

}

Fig. 5. def-uc-loop example: The measure (the value of g8) will decrease with each run
through the loop. The precondition assures that the last address to which we write
is within a boundary and that the starting value of g8 is positive, assuring termina-
tion. The run function is composed from two previously defined run functions (run-
clr loop last s) and (run-clr loop but last s). The specification describes the state upon
termination of the loop: clr -pram-k(start , end , val , s) copies value from g0 throughout
PRAM [start : end − 1]; g8 is set to 0; g9 is set to point at the address followed by the
last written address; and the program counter is set to the value from the top of the
return stack.

As for the backend, our model is a significant abstraction of the actual pro-
cessor, which is depicted in Figure 1. For instance, we abstract away out-of-order
execution of the micro operations. Consequently, things that appear very sim-
ple in our model, say, “get the current value in register g0,” are actually quite
complicated, involving, e.g., the register aliasing table, the reservation stations,
forwarding, the reorder buffer, etc. This said, significant parts of our model do
have a strong connection to the real hardware design. In previous work [1–3] we
described how we have developed an RTL-level verification framework within
ACL2, and used it to prove that our execution units for integer, media, and
floating point instructions implement desired operations. This previous work
means that, for many uops, we have a specification function, written in ACL2,
that functionally matches the execution of the uop in a particular unit. Thanks
to regression proofs, we can be quite confident that these specifications remain
up-to-date.

Now we can sketch how the step function is defined. It takes a state of our
abstract machine and returns the state of the machine after executing the ROM
instruction pointed to by the current PC (s.pc). The extraction of the ROM
instruction (get-rom-inst) is a simple lookup in the constant *ucode* – a list



representing the content of the ROM. It will then lookup the pre-computed for-
mula for the result of running the micro-translator unit on this instruction. The
hash table lookup returns a sequence of uops and additional sequencer infor-
mation in the form of symbolic formulas (sym uops, sym seq). These formulas
are pretty simple, depending on a few variables whose values can be extracted
from the current state. exec uops executes the sequence of uops by repeatedly
applying µop-def (see Section 2) one by one. µop-def is directly connected to
the proofs of hardware. In case of a conditional jump instruction, it also decides
whether the branch is taken. The function next-pc will determine the value of
the next PC which completes the execution of one instruction.

step : s → s ′ = {
inst = get-rom-inst(s.pc, ∗ucode∗)
(sym uops, sym seq) = lookup-uxlator(inst)
(uops, useq) = eval(s, sym uops, sym seq)
(branch taken, s) = exec-uops(uops, s)
s.pc = next-pc(s, useq, branch taken)
}

It is important to note that our model is defined in extensible way. It allows us
to relatively seamlessly move the boundary between the parts that are validated
and those that are contrived.

5 Related Work

Our work builds upon countless ideas and advancements in microprocessor and
machine code verification published over decades. Our contributions are in com-
bining these advances and using them in an industrial setting, and in connecting
methods for software and hardware verification under one unifying framework.

Operational semantics as a formalization of the meaning of programs was
introduced in the 60s by McCarthy [10]. Early applications can be found in
a technical report by van Wijngaarden et al. describing ALGOL68 [11]. Since
then, structural operational semantics has been extensively used for mechanical
verification of complex programs using various theorem provers: ACL2 and its
predecessor NQTHM [12–14]; Isabelle/HOL [15]; and PVS [16]. Smith and Dill
used operational semantics along with domain specific simplifications using a
SAT solver and ACL2 for automatic equivalence checking of object code imple-
mentations of block ciphers [17]. More recent attempts to formalize operational
semantics of complex ISAs come from Goel and Hunt [18] for x86, and Fox et al.
for ARM [19]. All these papers model languages on the ISA level or above, and
their operational semantics is not supported by any further verification. Wild-
ing et al. [20] made use of the executability of ACL2 functions to validate their
model by extensive testing against the hardware.

Many papers have discussed methodology for verifying the correctness of a
microprocessor’s microarchitecture with respect to its ISA [21, 22]. While these
defined crucial concepts and methods for bridging the two different abstraction



levels, they did not go beyond theoretical models of small to moderate size.
Even the more comprehensive machine verification project described by Hunt
[23], which includes some simple microcode verification connected to top-down
hardware verification, does not have the complexity and dimensions of industrial
scale designs.

Some work has been published by researchers from Intel R© on verification
of backward compatibility of microcode [24, 25]. The idea is based on creating
symbolic execution paths, storing them in a database and using them either for
testing or for checking assertions. This work differs from ours in several aspects.
First, it is not connected to hardware verification. Their operational semantics
of microcode is defined through a translation to an intermediate language with
predefined operational semantics. There is no direct connection of this semantics
to what is actually implemented in the hardware. Second, their approach uses
SAT/SMT, while we are using mostly theorem prover and symbolic simulator
that is built-in and verified within the prover. Finally, the verification objectives
of our work are very different: while we compare the effect of running a microcode
routine to a fully or partially defined specification that can be written on a high
abstraction level, their objective is to compare the behavior of two microcode
routines for backward compatibility.

Since the beginning of the computing era, the correctness of programs has
been on the minds of great computer scientists like Floyd [26], Hoare [27],
Manna [28], etc. The first papers concerned with program verification were based
on assertions, but at that point, researchers weren’t equipped with high-level
mechanized proof systems. Matthews et al. [29] merged the idea of operational
semantics with assertion verification. Their work is closest to our verification ap-
proach. Both our approach and that of Matthews et al. decompose the program
into blocks separated by cutpoints. The difference is that Matthews et al. use
the inductive invariant approach: a set of cutpoint/assertion pairs is defined and
the goal is to prove a global invariant of the form:

∀i (pc(s) = cutpoint i)⇒ assertioni(s).

In our approach, we characterize (fully or partially) the effect of running each
block (a sequence of operations between two cutpoints) on the state, then se-
quentially compose blocks together to build up a characterization of the effect of
a full microcode routine on the state. These two approaches have been shown to
be logically equivalent (in sufficiently expressive logic) [5]. Wormhole abstraction
has been introduced in [7]. The target of [7, 29] is a slightly higher level of ma-
chine code. The main difference to our work is that their operational semantics
remains unverified.

Last year, a paper by Alex Horn, Michael Tautschig and others [30] demon-
strated validation of firmware and hardware interfaces on several interesting
examples. Their work differs from ours in several aspects: Their methods re-
quire both hardware and software to be described in the same language (C or
SystemC); the hardware is much simpler than a microprocessor; and the main
method used for verification is model-checking.



6 Conclusion and Future Work

We presented an approach to microcode verification that is tightly connected
to ongoing hardware verification. Since our RTL and microcode proofs are done
within the same system, we are able to reuse the functions specifying hardware
behavior to model microoperations. While the microcode model is far from being
completely verified, our methodology has the flexibility to move the boundary
between proved and contrived parts of the model as we achieve more of its
validation.

We tried our approach on several microcode routines. One routine, that was
a representative of arithmetic operation routines, was a 54-instruction microcode
routine that performs unsigned integer division of a 128-bit dividend by a 64-bit
divisor, storing the 64-bit quotient and remainder. We proved the correctness of
this routine using 11 def-uc-block forms. Of these, five specified the behavior of
low-level code blocks, and the rest primarily composed these sub-blocks together
according to the control flow.

Another example was a verification of one of the critical algorithms that run
as a part of the machine bring-up process. The algorithm deals with decom-
pression of strings. The processor reads a an input that is a concatenation of
compressed strings of variable lengths and places it in scratch memory. The main
routine runs in a loop where one round identifies the beginning of the next com-
pressed substring and converts it back to uncompressed form. The beginning and
the type of a compressed substring is identified by its header. The decompression
algorithm is implemented in about 800 lines of code. Its logical structure con-
tains several loops (including nested loops) and many subroutines. A handful of
designated registers keep track of pointers to scratch memory, positions within
strings, counters, and currently processed strings, and many more are used as
temporary value holders. The correctness proof of the decompression uses about
50 def-uc-block/def-uc-loop structures. Since the algorithm and its implementa-
tion were frequently changing (adding new compression types, changing storage
location, etc.), it was important to have automated support for the detection of
these changes.

The main difference between our work and work done in academia is that
we have to deal with a real contemporary industrial design that is not only very
complex and sparsely documented, but also is constantly changing: both the
hardware model and microcode are constantly updated. This requires automa-
tion to detect the changes and (wherever possible) make the relevant adjust-
ments to proofs. Our automation includes regularly building the design model
and running a regression suite for both hardware and microcode proofs.

Even though our microcode verification methodology is based on the powerful
rewriting capabilities of the ACL2 theorem proving system [4], the approach
could be applied using other rewriting systems as well.

In the future we would like to expand our verification effort to cover more of
the critical microcode, e.g. in security-related areas. We also would like to pursue
a more systematic approach to the verification of ISA instructions, connecting



our specifications to a formal model of x86 such as the one one developed by
Goel and Hunt [18].
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