
Copyright
by

Jared Curran Davis
2009

The Dissertation Committee for Jared Curran Davis
certifies that this is the approved version of the following dissertation:

A Self-Verifying Theorem Prover

Committee:

J Strother Moore, Supervisor

E Allen Emerson

John Harrison

Warren A. Hunt, Jr.

Matt Kaufmann

Vladimir Lifschitz

A Self-Verifying Theorem Prover

by

Jared Curran Davis, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2009

For my wonderful wife—

It’s done!

Acknowledgments

I thank all of my committee members, Allen Emerson, John Harrison, Warren

Hunt, Matt Kaufmann, Vladimir Lifschitz, and J Moore for their time, expertise,

advice, suggestions, and encouragement. This work would not have been started, let

alone finished, without them.

I thank Dave Greve, Robert Krug, Sandip Ray, Erik Reeber, and Eric Smith,

each of whom has played a significant role in my learning to use ACL2. I also thank

Andrew Gacek, John Matthews, and Bill Young for their special interest in this

project and for useful feedback.

I thank the many people I have worked with at Rockwell Collins and Centaur

Technology, including Bob Boyer, Dave Greve, David Hardin, Warren Hunt, Dan

Luu, Terry Parks, Ray Richards, Al Sato, Anna Slobodova, Eric Smith, Sudarshan

Srinivasan, and Sol Swords. Working with these people has been a wonderful experi-

ence, and I especially thank Glenn Henry and Matt Wilding for bringing these people

together.

I thank the many other people who have participated at our weekly ACL2

seminar during my time at UT, including William Cook, John Erickson, Fares Fraij,

Ian Johnson, Hanbing Liu, Serita Nelesen, Grant Passmore, David Rager, Mark Reit-

blatt, Julien Schmaltz, Peter Seidel, Alex Spiridonov, Matyas Sustik, Ian Wehrman,

Chad Wellington, Bill Young, and Qiang Zhang. This group has been a great source

of ideas, feedback, and technical support.

I thank our systems administrators, particularly Amy Bush, John Chambers,

Fletcher Mattox, and Jason Pepas, for always going out of their way to provide me

v

with access to reliable and powerful computing resources.

I thank the National Science Foundation (NSF) and the Defense Advanced

Research Projects Agency (DARPA) for their support: this material is based upon

work supported by DARPA and the NSF under grant number CNS-0429591, and by

DARPA under contract NBCH30390004. During this project, I have made heavy

use of the Mastodon cluster at the University of Texas at Austin, which was made

possible, in part, by the NSF under CISE research infrastructure grant EIA-0303609.

Finally, I thank my family and friends for their encouragement and support,

and most of all Laura, my wife, for her love and patience.

vi

A Self-Verifying Theorem Prover

Publication No.

Jared Curran Davis, Ph.D.
The University of Texas at Austin, 2009

Supervisor: J Strother Moore

Programs have precise semantics, so we can use mathematical proof to es-

tablish their properties. These proofs are often too large to validate with the usual

“social process” of mathematics, so instead we create and check them with theorem-

proving software. This software must be advanced enough to make the proof process

tractable, but this very sophistication casts doubt upon the whole enterprise: who

verifies the verifier?

We begin with a simple proof checker, Level 1, that only accepts proofs com-

posed of the most primitive steps, like Instantiation and Cut. This program is so

straightforward the ordinary, social process can establish its soundness and the con-

sistency of the logical theory it implements (so we know theorems are “always true”).

Next, we develop a series of increasingly capable proof checkers, Level 2, Level

3, etc. Each new proof checker accepts new kinds of proof steps which were not

accepted in the previous levels. By taking advantage of these new proof steps, higher-

level proofs can be written more concisely than lower-level proofs, and can take less

time to construct and check. Our highest-level proof checker, Level 11, can be thought

of as a simplified version of the ACL2 or NQTHM theorem provers. One contribution

of this work is to show how such systems can be verified.

vii

To establish that the Level 11 proof checker can be trusted, we first use it,

without trusting it, to prove the fidelity of every Level n to Level 1: whenever Level

n accepts a proof of some φ, there exists a Level 1 proof of φ. We then mechanically

translate the Level 11 proof for each Level n into a Level n − 1 proof—that is, we

create a Level 1 proof of Level 2’s fidelity, a Level 2 proof of Level 3’s fidelity, and so

on. This layering shows that each level can be trusted, and allows us to manage the

sizes of these proofs.

In this way, our system proves its own fidelity, and trusting Level 11 only

requires us to trust Level 1.

viii

Table of Contents

Acknowledgments v

Abstract vii

Chapter 1. Introduction 1
1.1 The Dissertation . 3
1.2 Planning the Proof . 7
1.3 Self-Verification . 10
1.4 A Verified Stack . 12
1.5 Organization of the Dissertation . 13

Part I The Trusted Core 18

Chapter 2. The Logic 19
2.1 Formulas . 21
2.2 Validity and Proof . 23
2.3 Basic Rules of Inference . 25
2.4 Primitive Functions . 31
2.5 Abbreviations . 41
2.6 Defining Functions with Axioms . 44
2.7 Ordinals . 46
2.8 Induction . 56
2.9 Events . 58

Chapter 3. The Proof Checker 62
3.1 Utilities . 62
3.2 Terms . 67
3.3 Formulas . 74
3.4 Appeals . 78
3.5 Step Checking . 80
3.6 Proof Checking . 98
3.7 Provability . 100

ix

Chapter 4. System Implementation 102
4.1 Milawa Functions as Programs . 103
4.2 Supporting Abbreviations . 113
4.3 The History . 125
4.4 Termination Obligations . 127
4.5 Establishing Provability . 133
4.6 Reading Objects . 135
4.7 Events . 138
4.8 Checkpointing . 143
4.9 The Command Loop . 145

Part II Building Proofs 150

Chapter 5. Propositional Calculus 151
5.1 Implementing Derived Rules . 151
5.2 Reasoning about Derived Rules . 154
5.3 Simple Derivations . 159
5.4 Recursive Derivations . 172
5.5 Subsets . 177
5.6 Tautologies . 186
5.7 Equivalence Substitution . 190

Chapter 6. Equality 194
6.1 Simple Derivations . 194
6.2 Term-Level Equality . 202
6.3 Equality Substitution . 211
6.4 Evaluation . 218

Part III Theorem Proving 223

Chapter 7. Clauses 224
7.1 Conversion to Clauses . 225
7.2 Updating Clauses . 230
7.3 Equivalent Literals . 233
7.4 Clause Cleaning . 240
7.5 Clause Splitting . 249
7.6 If Lifting . 255

x

Chapter 8. Assumptions 267
8.1 Term Ordering . 269
8.2 Hypboxes . 270
8.3 Equivalence Traces . 271
8.4 Equivalence Databases . 278
8.5 Assumptions Structures . 281
8.6 Fast Assumptions . 285

Chapter 9. Rewriting 291
9.1 Rewrite Traces . 291
9.2 Controlling the Rewriter . 298
9.3 The Rewriter . 306
9.4 Ancestors Checking . 316
9.5 Free-Variable Matching . 319
9.6 Syntactic Restrictions . 322
9.7 Rewriter Caching . 326
9.8 Forcing Hypotheses . 331
9.9 Justifying the Rewriter . 336
9.10 Fast Rewriting . 350
9.11 Rewriting Clauses . 355

Chapter 10. Tactics 361
10.1 Implementing Tactics . 364
10.2 Worlds . 371
10.3 Tactic Library . 378
10.4 Verifying Tactics . 393

Part IV Self-Verification 401

Chapter 11. User Interface 402
11.1 Proof Management . 403
11.2 ACL2 Connection . 409
11.3 Proof-Checking Support . 414
11.4 Rewriter Debugging . 415
11.5 Parallelism . 420

xi

Chapter 12. Bootstrapping 421
12.1 Level 2 – Propositional Rules . 422
12.2 Level 3 – Basic Functions . 430
12.3 Level 4 – Miscellaneous Groundwork 435
12.4 Level 5 – Equivalence Traces, Updating Clauses 435
12.5 Level 6 – Factoring and Splitting 437
12.6 Level 7 – Split Tactics . 438
12.7 Level 8 – Rewrite Traces . 439
12.8 Level 9 – Unconditional Rewriting 443
12.9 Level 10 – Conditional Rewriting 446
12.10 Level 11 – Tactics . 449
12.11 Comparing Proof Checkers . 451
12.12 Final Checks . 452

Chapter 13. Conclusion 458
13.1 Relation to Other Work . 459
13.2 Future Directions . 470

Appendices 477

Appendix A. Derivations for Iff 478

Appendix B. Derivations for Clause Splitting 497

Appendix C. Main Lemma for the Fast Rewriter 509

Bibliography 518

Index 531

Vita 542

xii

Chapter 1

Introduction

Programming is an “exact science” in that our understanding of what a pro-

gram does follows from the pure, abstract semantics of the language in which it is

written. [43] Formal verification is the use of mathematical proof to show programs

have desirable properties with respect to these semantics; for instance, we might prove

a sorting program returns an ordered permutation of its input. The ability to show a

program produces correct results for all possible inputs separates formal verification

from testing, code reviews, and other software-engineering approaches.

There is no way to guarantee an actual computer will obey the semantics of

its instruction set as it runs. Computers often suffer from design and manufacturing

defects, and even the most well-built machine will misbehave when subjected to power

surges, magnetic interference, physical tampering, and ordinary wear and tear. For-

mal verification, then, is not a tool for making claims about the reliability of systems

in the real world, but is useful only for establishing a necessary precondition, viz. the

program is properly written. [26]

Before formal verification can begin, we need to develop a precise, mathe-

matical explanation of the semantics of the programming language. This can be a

daunting task if the language is complicated, but basic approaches such as opera-

tional and denotational semantics are well known. After a mathematical model of

the program has been developed, we can attempt to prove it behaves as desired.

What is a mathematical proof? Usually it is a concise document, written in

1

a mixture of symbolic notations, diagrams, and English or another language, that

carefully explains why a formula is a theorem. Confidence in such proofs is obtained

through a social process: the proof is reviewed by editors, published, presented at con-

ferences, and eventually read by the greater mathematical community. Once many

experts have examined a proof without finding any flaws, its veracity becomes in-

creasingly certain. [24]

Unfortunately, there is little hope that this approach can be used to check

proofs about interesting programs. Program proofs are excessively large and—well,

boring. This makes it difficult to gather a critical mass of interested mathematicians,

and hard to believe their examination has been truly rigorous. Also, the social process

is slow. This may be appropriate in traditional mathematics where the basic concepts

have been fixed for decades, but it is not acceptable for programs which are being

frequently changed to meet new requirements. [24]

A different kind of proof comes from mathematical logic. A formal proof is

written as a long list of symbolic formulas. Each of these formulas must either be

an axiom or must follow from previous formulas using a simple rule of inference.

Mathematicians find formal proofs to be longer, more difficult to write, and more

tedious to check than ordinary proofs. On the other hand, this rigid format makes

checking each individual step of a formal proof quite easy, which allows proof checking

to be automated with computer programs.

Writing formal proofs can also be automated to some degree. For certain lim-

ited classes of problems, such as propositional tautologies and basic arithmetic, fully

automatic decision procedures are known. For more difficult problems, interactive

approaches that make use of human guidance are usually necessary.

One style of interaction is called The Method in Boyer-Moore theorem provers

such as NQTHM [17] and ACL2 [50]. When a user begins working to prove a new

2

theorem, he gives a little guidance—“induct this way”, or “consider these cases”—

then turns the problem over to a rewriter. The rewriter uses libraries of reusable

rules, each of which has been proven earlier, to simplify the resulting cases. Some

cases will be proven outright, and he can inspect the rest to decide which additional

rules or hints are needed. Over time, his library of rules becomes a potent strategy

for reasoning in his problem domain.

Using programs to write and check formal proofs is a good fit for formal veri-

fication. Tedium is no problem for computers, and once the proofs have been discov-

ered, computerized checking is typically much faster than the social process. Also,

when we guide the prover mainly through indirect advice, e.g., “use these lemmas”

or “use this domain-specific solver,” it can often discover updated proofs after the

program we are verifying has been changed. [60]

1.1 The Dissertation

Can computer-checked proofs be trusted? With three caveats, yes.

First, we should guard against the possibility that the computer used to run

our program will make a mistake. While there is no way to guarantee no errors have

occurred, the chance can be lessened by double- or triple-checking proofs with many

computers. Ideally, the computers used should be manufactured at different facilities

and based upon different designs to lessen the chance that they share some equivalent

flaw. [1]

Second, we need to have confidence in the mathematical logic which is being

implemented. Roughly speaking, the axioms must be true and the rules of inference

must be truth-preserving, so that anything which is provable is true. Social proof is

an appropriate mechanism for establishing such results, and introductory courses on

3

mathematical logic usually cover how such proofs may be carried out.

Finally, we must ensure the proof-checking program is written correctly, i.e.,

it only accepts valid proofs. Unfortunately, the decision procedures, rewriters, and

special-purpose programs which are used by theorem-proving software bear little re-

semblance to the simple rules of inference from mathematical logics. In theorem

provers like ACL2 [50] and PVS [70], this disconnect can sometimes lead to “proofs”

of non-theorems.

A well-known approach to reconciling this difference is to write these algo-

rithms in a fully expansive manner. For instance, whereas an ordinary tautology-

checking program might simply say “yes, φ is a tautology,” a fully expansive program

would additionally produce a formal proof of φ. Constructing fully expansive proofs

sometimes incurs a considerable efficiency penalty. [23] On the other hand, when

the LCF approach [31] is followed, the overhead of producing proofs is often not pro-

hibitive [39], and today there are several fully expansive provers available, including

Isabelle/HOL [67], HOL [33], and HOL Light [40].

This dissertation explores a different approach. Can we establish, in advance,

that a useful, automated theorem prover can be trusted?

Our theorem prover is named Milawa, and it is probably best regarded as an

“academic strength” imitation of the “industrial strength” ACL2. Many features of

ACL2’s reasoning engine are not reimplemented in Milawa, including its primitive

type-reasoning, arithmetic procedure [47], meta rules [46], generalized equivalence

relations [21], functional instantiation [15], and support for external tools [55]. On

the other hand, Milawa’s rewriter has many capabilities and heuristics which are

similar to ACL2’s, e.g., it can use rewrite rules which have free variables, forcibly

assume hypotheses, etc., and overall, The Method is the same.

4

The Milawa logic is a simple, first-order logic of total, recursive functions with

induction, styled after the logic of ACL2 [53]. Like ACL2’s logic, Milawa’s logic is

“computational” and resembles functional programming, so it is straightforward to

run Milawa-logic functions as Common Lisp programs. To allow the reader to have

confidence in our logic, in Chapter 2 we present a rigorous description of its formulas

and rules, and a social proof explaining why these rules are sound.

How might we establish that theorem prover obeys the rules of its logic? First,

we would need a formal definition of provability for the logic being implemented, and

confidence that this formalization is correct. Second, we would need a convincing and

accurate mathematical model of the program’s behavior. Finally, we would like to

connect these two concepts with a believable proof of the following property, which

we call the fidelity of the theorem prover: every formula accepted by the theorem

prover is provable in the logic.

Since theorem provers are complex programs, it is difficult to trust a social

proof of their behavior. It would also not be very convincing to have a prover verify

its own fidelity, since this would be like asking someone “Do you ever lie?” So ideally,

this proof should be carried out using some other automated proof system which is

so simple that the ordinary, social process can show it is trustworthy.

In this dissertation, we formalize provability by introducing a function in the

Milawa logic, named proofp, that determines whether an object represents a valid

proof. We say a formula φ is provable when proofp accepts some proof of it. To

make this formalization as convincing as possible, we write proofp very simply, and

it intentionally bears a strong resemblance to the logical definition of proof. The

development of proofp is covered in Chapter 3.

We also write our theorem prover in the Milawa logic. The advantage of this

approach is that the Common Lisp program and its mathematical model are very

5

closely related, which makes it easier to believe the model is accurate. We make

an “academic” choice to keep this connection as simple as possible, even though it

means putting up with some efficiency limitations, e.g. we must always use arbitrary-

precision arithmetic, cannot perform destructive updates, have no arrays or hash

tables, and lack parallelism. A more “industrial” approach would do away with these

limitations by adding features such as the guards, single-threaded objects, hash cons,

fast association lists, and parallelism primitives which are available [73, 37, 16] in the

ACL2 system. Such features allow for more efficient execution, but complicate the

connection with the programming language.

Since we have modeled both provability and the theorem prover in the Milawa

logic, it is convenient to carry out the fidelity proof in this same logic. It does not

take much additional infrastructure to write a program around proofp, in Common

Lisp, which allows its user to define new functions and check proofs of theorems.

This program provides no automation for finding proofs, but it is simple enough to

be validated by the social process. We explain its implementation in Chapter 4.

Finally, we develop a proof which shows that our theorem prover only accepts

formulas that satisfy our definition of provability. It takes some work to develop such

a proof, and the rest of this introduction explains our approach. After the proof has

been constructed, we check it with our simple proof-checking program, on a variety

of computers, to ensure its validity.

In the end, we can freely use the Milawa theorem prover and have confidence

that whenever it claims to have proven a formula, that formula is indeed true.

6

1.2 Planning the Proof

Our theorem prover is a complicated program, so it is challenging to prove

properties about its behavior. Meanwhile, it is practically difficult to write proofp-

style proofs because they are excessively large and repetitive. How, then, can we

construct a proofp-style proof of our program’s fidelity?

We begin by using ACL2 to develop a proof plan. ACL2 is normally thought

of as a trustworthy tool, but here we are using it only informally as a familiar,

mature environment in which to “sketch” how the proof can be completed. This

planning process is useful because it separates the intellectual task of discovering

why the statement is true from the engineering task of constructing and checking

such a large formal proof. Because the ACL2 logic is so similar to the Milawa logic,

it is straightforward to model Milawa in ACL2.

Milawa employs a number of proof techniques. To establish the fidelity of

the whole of Milawa, we must show that any claim made by these techniques can

be justified using the rules of the Milawa logic. As an example, Milawa may use

“evaluation” to reduce ground terms to constants, e.g., given fact(5), evaluation will

produce 120. The claim being made is that the formula, “fact(5) = 120,” is provable.

In our proof plan, our basic approach to verifying these proof techniques is

as follows. First, we write a fully expansive version of the technique. Then, we use

ACL2 to show that for all sensible inputs, (1) the fully expansive version produces a

valid proofp-style proof, and (2) this proof has “the right conclusion.”

In the case of evaluation, we begin by developing a fully expansive evaluator.

Whereas our ordinary evaluator will produce 120 when given fact(5), this new function

constructs a proofp-style proof that concludes fact(5) = 120. We then use ACL2

to show (1) when the definitions used to evaluate some term, x, are valid, then the

7

fully expansive evaluator produces a valid proof, and (2) this proof concludes x = x′,

where x′ is the result of evaluating x with our ordinary evaluator.

In our ACL2 proof plan, the fully expansive evaluator provides a constructive

method of justifying any claim made by our evaluator. If our goal was only to provide

an ACL2 proof of Milawa’s fidelity, there would be no need to ever run this function.

But, as we will see in the next section, the fully expansive evaluator (and the fully

expansive versions of our other techniques) are also useful in converting our ACL2

proof sketch into a proofp-style proof.

After accounting for all of Milawa’s proof techniques in this manner, we arrive

at a fairly large ACL2 proof. What does the proof look like? Having followed The

Method, it is a sequence of “events” involving roughly 2,700 definitions and 11,600

lemmas. The main steps in this sequence are as follows.

1. A utility library with the most basic functions about arithmetic, lists, and so

on is introduced. This involves 386 definitions and 1,426 lemmas. We do not

cover this in any depth since it is such typical ACL2 work.

2. Concepts from the Milawa logic are introduced, such as the encoding of terms,

formulas, and proofs. Along the way, typical ACL2 lemmas are introduced for

reasoning about these concepts. Altogether there are 242 functions, including

proofp, and 1,980 lemmas.

3. Low-level functions for building proofp-style, fully expansive proofs are then

developed. This includes functions for performing basic propositional manip-

ulation, substituting into equalities, and so forth. For each function, ACL2

lemmas establish that, given valid inputs, a valid proof with the expected con-

clusion will result. Altogether, this involves 657 functions and 1,555 lemmas.

This work is primarily addressed in Chapters 5 and 6.

8

4. Clauses, which provide the foundation for proof search, are introduced, along

with Milawa’s techniques for simplifying, updating, and case-splitting clauses.

Fully expansive versions of these techniques are developed and shown to produce

valid proofs. This involves another 289 definitions and 1,482 lemmas, and is

covered in Chapter 7.

5. Milawa’s assumptions system, which assists the rewriter by managing tables of

equalities and Boolean equivalences, is then developed. In the fully expansive

version of the assumptions system, “traces” are recorded as inferences are made,

and these traces can later be compiled into fully expansive proofs to justify each

inference. Altogether this takes 164 definitions and 908 lemmas, and is covered

in Chapter 8.

6. The Milawa rewriter is then introduced. Rewriting is the main component of

Milawa’s proof strategy. To simplify goals, the rewriter makes use of assump-

tions, calculation, and user-supplied rules which are organized into “theories.”

The fully expansive version of the rewriter records traces which can later be

compiled into proofs. In all, 699 functions and 3,143 lemmas are introduced.

We discuss the rewriter in Chapter 9.

7. Other proof techniques are introduced and justified. These include “hints”

which allow the user to generalize terms, use equalities in certain ways, consider

particular instances of previous theorems, and so on. We then bundle these

techniques together with the rewriter, case splitting algorithm, and so on, to

form a tactic system for carrying out proofs. This involves 305 definitions and

1,120 lemmas, and is discussed in Chapter 10.

The ACL2 proof of Milawa’s fidelity may not, by itself, be entirely convincing.

ACL2 is a complex computer program which has not undergone a rigorous, mechanical

9

verification, and has a much larger “trusted core” than fully expansive provers such

as HOL Light.

1.3 Self-Verification

During the course of the ACL2 proof, fully expansive versions of each of Mi-

lawa’s proof techniques were developed. Because of this, it is not difficult to assemble

a fully expansive version of Milawa which can emit proofp-style proofs of the theo-

rems it claims to have proven.

Since (1) Milawa is quite similar to ACL2 in terms of its logic and the basic

proof strategy it implements, and (2) an ACL2 proof of Milawa’s fidelity has been

developed, the following becomes a possible strategy for constructing a proofp-style

proof of Milawa’s fidelity: first, redo the ACL2 proof in Milawa, then have it emit a

proofp-checkable justification of its work.

Translating the ACL2 proof into Milawa took some work. As an important

step in this effort, we developed a user interface within ACL2 for finding and building

Milawa proofs. This interface allows us to introduce the Milawa counterparts to ACL2

functions and theorems quite easily, and keeps our ACL2 proof sketch in sync with

the actual Milawa proof. We present an overview of this interface in Chapter 11.

Although the two provers are largely similar, there are a number of differences

in the specifics of their implementations. This gap was bridged from both sides. First,

as the ACL2 proof was being developed, a conscious effort was made to avoid using

“complicated” features of ACL2 which would be difficult to implement in Milawa.

Some examples of this are as follows.

1. ACL2’s elaborate type-reasoning system could not be entirely disabled, but it

was possible to weaken it in many ways. For one, ACL2 automatically infers

10

certain type information when new definitions are submitted, so the prover was

instructed not to use these rules. Certain built-in type-reasoning rules were

also disabled, and no type-reasoning lemmas were ever added. Finally, where

possible, new aliases were used to hide primitive functions such as car and +

to prevent special, deeply built-in type-reasoning about these functions.

2. It was not possible to disable ACL2’s arithmetic procedure, but most arithmetic

reasoning was avoided. Aliases were used for functions such as <, +, and natp,

so the arithmetic procedure would not see functions it knew about when it

inspected clauses. Also, no arithmetic lemmas were ever added.

3. ACL2 was instructed not to “generalize” terms or “cross-fertilize” equalities

automatically during proofs. It is usually straightforward to introduce lemmas

to avoid needing these techniques.

4. Forward-chaining rules were completely avoided, as were more advanced kinds

of reasoning, such as custom equivalence relations, congruence rules, meta-rules,

and external tools.

Second, when it became evident that avoiding some ACL2 feature would be

too difficult, the feature was added to Milawa instead. This would require redoing

some of the ACL2 proof, since Milawa itself had been changed. But since The Method

had been followed, most proofs were robust in the face of such changes. Over time,

several features were added to Milawa’s rewriter, including ancestors checking, free-

variable matching, and forcing, to make it powerful enough to carry out the proof.

And in the end, the Milawa proof matches ACL2’s almost lemma-for-lemma.

11

1.4 A Verified Stack

Unfortunately, it is not practical for the fully expansive version of Milawa to

emit a proofp-style proof of the entire fidelity argument. Even despite some work to

make the low-level proof-building routines more efficient, the proof is overwhelmingly

large and its construction is well beyond the capacity of our computers. (A more

detailed discussion of proof sizes and capacity limitations may be found in Chapter

12.)

Even so, the goal of verifying Milawa with proofp is still possible, via the

less-direct approach of introducing and verifying a sequence of increasingly capable

proof checkers. We use the word levels to describe this sequence. That is, we say that

proofp is the Level 1 proof checker; the objects it accepts are Level 1 proofs and may

use only Level 1 proof steps. These Level 1 steps correspond to the primitive rules

of inference of the Milawa logic. At each new level in the sequence, we allow new

kinds of proof steps to be used. For instance, given a proof of (A∨B)∨C, it follows

that A ∨ (B ∨ C). We call this right associativity. Level 2 expands upon Level 1 by

accepting steps such as right associativity, in addition to all of the Level 1 steps.

Because of our previous work, it is relatively easy to develop an ACL2 proof

of the fidelity of the Level 2 proof checker—that is, whenever a Level 2 proof of φ is

accepted, there exists a Level 1 proof of φ. We redo this proof in Milawa, and use the

fully expansive version of Milawa to emit a Level 1 proof that establishes the fidelity

of the Level 2 proof checker. This proof is small enough to practically construct and

check.

This is progress. By taking advantage of these new steps, Level 2 proofs can

be written more concisely than Level 1 proofs. It takes eight Level 1 proof steps to

carry out the work of a single right-associativity step, and this savings is realized for

12

every use of the new rule. This means it is practical to build and check more difficult

proofs in Level 2 than in Level 1. Yet, we have a Level 1 proof that establishes the

fidelity of Level 2, so to trust Level 2 we only need to trust Level 1.

A Level 2 proof of Milawa’s fidelity is still too large to construct, but it is

possible to introduce additional intermediate proof checkers, each more capable than

the last. We call this process bootstrapping, and cover it in Chapter 12.

In our most sophisticated proof checker, Level 11, a single proof step might

involve the application of several tactics, which carry out tasks such as splitting

a clause into subgoals, generalizing terms, using equalities, explicitly instantiating

theorems, and rewriting terms while making use of assumptions, calculation, and

user-supplied rules.

1.5 Organization of the Dissertation

Because this dissertation is quite long, we now provide a map which summa-

rizes our organization. We encourage the reader to return to this map from time to

time to recall the overall structure of the dissertation.

Part 1. The Trusted Core

We claim our theorem prover may be trusted because its logic is sound and

we have proven it obeys the rules of this logic. More precisely, we have proven that

whenever our program accepts some formula, φ, there exists a proof of φ that is

accepted by our Level 1 proof checker. To agree with our claim, the reader must trust

that our logic is sound, we have modeled our program accurately, and we have have

properly formalized provability. Furthermore, for our fidelity proof to be trusted, the

reader must understand how it is checked. In Part 1, we set out to address these

concerns.

13

Chapter 2. The Logic. So the reader may have confidence that our logic

is sound, we begin with a rigorous presentation of the syntax of our logic, and an

enumeration of its axioms and rules of inference. We provide an informal, “social”

proof that axioms are valid, and our rules of inference are validity-preserving.

Chapter 3. The Proof Checker. We describe how terms, formulas, and proofs

may be encoded as objects in our logic, and introduce proofp, which serves as our

formalization of provability. To gain confidence that proofp only accepts legitimate

proofs, the reader should examine its implementation and compare it to the rules in

Chapter 2.

Chapter 4. System Implementation. We develop a way to execute functions

from our logic using a Common Lisp system. Since we introduce proofp as a function

in our logic, this mechanism allows us to run proofp from within Common Lisp. We

then implement, in Common Lisp, a primitive command-line program that allows a

user to introduce a sequence of definitions and theorems for proofp to check. Notably,

one of our program’s commands allows us to install a new proof checker after verifying

its fidelity. We introduce and verify our theorem prover by using these commands.

The reader should examine both the connection with Common Lisp and how these

commands are processed to understand how the theorem prover is modeled and how

its proof is checked.

Part 2. Building Proofs

In Part 2, we explain how derived rules of inference can be implemented as

functions that construct fully expansive proofs, and how, in our ACL2 proof plan,

we can reason about the proofs constructed by these functions. (Later, in Part 4,

we explain how this proof plan can be converted into a form that can be checked

by our program from Part 1.) These derived rules become “subroutines” of our fully

14

expansive proof techniques, and play a crucial role in allowing us to describe and

reason about proofs at higher levels of abstraction.

Chapter 5. Propositional Calculus. We explain our basic approach to imple-

menting derived rules as proof-building functions, and the details of how we reason

about these functions. We then develop a number of rules to make propositional rea-

soning more convenient, ranging from rules as simple as Modus Ponens to inductively

derived rules that can prove any propositional tautology.

Chapter 6. Equality. We begin to look beyond propositional reasoning. We

begin with simple derived rules for reasoning about equalities, e.g., the reflexivity

and transitivity of equality, and explain how we can write and reason about derived

rules which require the availability of certain axioms and theorems. We develop

rules for carrying out “deep” equality substitutions, and implement a McCarthy-style

evaluator for ground terms as a derived rule.

Part 3. Theorem Proving

In Part 3, we introduce our theorem prover. We style the prover after ACL2.

It can carry out a backward (goal-directed) proof search, making use of case-splitting,

rewriting, and and other techniques such as induction, generalization, and destructor

elimination. As we introduce each algorithm, we explain how we can justify its use.

Chapter 7. Clauses. Clauses form the basis for our backward proof search: we

represent each goal to be proven as a clause, then apply reversible reductions to the

goal to obtain simpler goals. We develop some basic ways to manipulate and simplify

clauses, and introduce our if-lifting and case-splitting algorithms, which can be used

to break a complex goal into simpler subgoals.

Chapter 8. Assumptions. When rewriting a goal such as A ∨ B, we may

assume A is false as we rewrite B. Our rewriter makes use of an assumptions system

15

which records what has been assumed and can canonicalize terms which are known

to be equivalent.

Chapter 9. Rewriting. Rewriting with lemmas is the main tool in our style of

theorem proving. Our rewriter can simplify clauses using assumptions, calculation,

and conditional rewrite rules whose hypotheses are relieved by backchaining (recursive

rewriting). It implements many features from ACL2’s rewriter, such as ancestors

checking and forcing.

Chapter 10. Tactics. We implement a tactic system which can be used to

compose our clause reductions and manage a backward proof. We provide tactics

for routines like case splitting and rewriting from previous chapters, and also tactics

for other techniques such as induction, generalization, and destructor elimination.

Together, these tactics form our theorem prover.

Part 4. Self-Verification

Taken together, Parts 2 and 3 introduce our theorem prover and explain how

it is verified in ACL2. But our goal is to instead carry out the fidelity proof using

the program from Part 1. Our strategy is to first recreate the ACL2 proof plan using

Milawa, then use the fully expansive versions of our proof techniques to emit proofs

which can be checked by our program.

Chapter 11. User Interface. We develop a user interface for applying the

tactics from Milawa. The user interface is integrated into ACL2. It allows us to

easily introduce the Milawa counterparts of ACL2 functions and theorems. It can

also use the fully expansive versions of our proof techniques to emit proofs for our

program from Part 1 to check. This interface is only a tool for using Milawa, is not

verified, and need not be trusted.

Chapter 12. Bootstrapping. Using the interface, we direct Milawa to carry

16

out the proofs from our ACL2 proof plan. Once Milawa has proved its own fidelity,

we emit proofs for our program to check. To manage the size of these proofs, we

introduce and verify a number of intermediate proof checking levels. Finally, we run

our program on a number of computers and Lisp systems to check the proofs. As a

result, only the program in Part 1 must be trusted.

17

Part I

The Trusted Core

18

Chapter 2

The Logic

A prerequisite to writing a theorem prover or proof checker is to decide upon a

mathematical logic to use. Modern theorem provers do not agree on any standard, and

this choice is “a matter of taste and experience” [57] which may be viewed “eclectically

and pragmatically.” [60, ch. 8]

The Milawa logic is a simpler variant of the ACL2 logic [50, 53]. Our objects

are the symbols and naturals, recursively closed under ordered pairing. By com-

parison, ACL2 additionally includes characters, strings, and non-natural integers,

rationals, and complex rationals. The removal of these types is intended to make the

object system as simple as practically possible, and does not reduce the expressivity

of the logic. For instance, one might represent characters with their ASCII codes,

strings with lists of characters, integers with sign/magnitude pairs, rationals with

numerator/denominator pairs, and complex rationals with pairs of rationals.

To make Common Lisp execution of our logical functions as simple as possible,

we do away with packages, guards, single-threaded objects, and so on. We associate

a primitive constant with each of our objects, and use a new rule, base evaluation,

to explain the behavior of our primitive functions on constants. This rule is similar

to the way in which McCarthy’s [63] Lisp interpreter uses special cases to evaluate

“elementary S-functions” like cons.

Our logic is first-order, lacks explicit quantifiers, and has equality as its only

predicate symbol. We directly adopt Shoenfield’s rules of propositional calculus [83],

19

which are usually used in descriptions of the ACL2 logic, and we keep ACL2’s instan-

tiation rule. We adopt an induction rule similar to that of ACL2 and NQTHM [12].

Also like ACL2, we permit the introduction of total, untyped, recursive functions,

and the introduction of Skolem (quantifier witnessing) functions.

The lack of static typing, quantifiers, and higher-order functions makes our

logic fairly restrictive. Despite similar restrictions, Boyer-Moore provers have been

successfully used in the verification of hardware modules [77, 79, 48, 49], processor

models [45, 20, 65, 36, 80], machine- and byte-code programs [14, 59], operating

systems [8], virtual machines [19, 58], compilers [94, 6, 29], and other algorithms [74,

89, 76, 66].

There are some advantages to using a simple logic. For example, term quo-

tation and reflection are more straightforward when terms are untyped and term

equality does not rely on reductions [3, 44]. Also, because our terms are so simple, we

do not need a type checker, type inference engine, or much in the way of interfacing

layers like parsers and term rendering. All together, this helps to keep the source code

for our proof checker small, which is important since our trust in the proof checker is

to rely upon the social process.

Finally, using a simple logic seems particularly appropriate. The techniques

we develop should be adaptable to more powerful logics without trouble, whereas if

we were to begin with a powerful logic, we might rely upon features that are not

available in weaker logics. It may even be easier to follow our approach to verify

theorem provers in more expressive logics, where more powerful rules of inference

would be available, and hence fewer intermediate proof-checkers might be necessary.

In this chapter, we provide a rigorous introduction to our logic and an expla-

nation of why its rules may be trusted. Little here is novel, and our goal is only to

lay a proper foundation for later chapters.

20

2.1 Formulas

The first step in presenting a mathematical logic is to describe rigorously the

syntax of its formulas. Like statements in a programming language, our formulas

are built from more primitive elements of syntax. The smallest units of syntax are

called tokens. We have a numeric token corresponding to every natural number and

a symbolic token corresponding to every string of ASCII characters.

We will use the typewriter font to write fragments of syntax. For compat-

ibility with the Common Lisp reader, we may write down a particular numeric token

in many ways. For instance, the token for sixty-four may be written in decimal as 64,

in hexadecimal as #x40, in octal as #o100, or in binary as #b1000000. We consider

these variations not to be different tokens, but only as different ways to write the

same token.

To write down a symbolic token, we typically use vertical-bar characters to

denote the beginning and end of the token. We also adopt an escape convention so

that a backslash in front of any character just represents that character. As with

numeric tokens, we consider variants such as |f\o\o| and |foo| as merely different

ways of writing the same token.

This use of vertical bars allows us to distinguish symbolic tokens from other

syntactic elements. For instance 123 is a numeric token while |123| is symbolic. But

these bars are often unnecessary. When a symbolic token cannot be confused for a

number, is entirely in upper-case, and does not include various problematic characters

(such as non-printable ASCII characters, parentheses, commas, colons, spaces, quotes,

and so on, as in Common Lisp), then we may drop the vertical bars and write it in a

case-insensitive manner. Here are some examples.

21

Notation Corresponding String
|Hello, World!| Hello, World!
|a\|b| a|b
|C:\\Windows| C:\Windows
|| the empty string
|f\o\o| foo
append APPEND
Int32 INT32
math.square MATH.SQUARE
3+x 3+X

The rest of our syntax is based on token trees, which we define recursively as

follows: every token is a token tree, and whenever a and b are token trees, so too is

the ordered pair of a and b, which we write as (a . b). Just as there are many ways to

write down the same number or symbol, we will adopt some notational conveniences

from Lisp for writing down token trees.

Abbreviation Meaning
() nil
(x) (x . nil)
(x1 x2 . . . xn) (x1 . (x2 . . . xn))
(x1 x2 . . . xn . b) (x1 . (x2 . . . xn . b))
’x (quote x)

Whenever x is a token tree, we say ’x is a constant. The variables are any

symbolic tokens except for t and nil. The function names are any symbolic tokens

except for:

nil pequal* first and
quote pnot* second or

por* third list
fourth cond
fifth let

let*

We simultaneously define the terms and the free variables of a term—which we

denote as freevars(t)—as follows. Every constant is a term with no free variables.

22

Every variable, v, is a term whose only free variable is v, itself. A function application,

(f t1 . . . tn), is a term when f is a function name and t1, . . . , tn are terms; its free

variables are ⋃i=1...n freevars(ti). This definition does not include any notion of arity

checking, but we address well-formedness in the next section. A lambda abbreviation,

((lambda (x1 . . . xn) β) t1 . . . tn),

is a term when x1, . . . , xn are distinct variables, called the formals, β is a term, called

the body, t1, . . . , tn are terms, called the actuals, and freevars(β) ⊆ {x1, . . . , xn};

its free variables are ⋃i=1...n freevars(ti).

We define the formulas as follows. (pequal* t1 t2) is a formula when t1, t2 are

terms, (pnot* F) is a formula when F is a formula, and (por* F G) is a formula

when F and G are formulas. Since pequal*, pnot*, and por* are not function names,

there is no confusion between terms and formulas.

2.2 Validity and Proof

A key idea of mathematical logic is that a notion of truth can be assigned to

formulas, and formulas can be manipulated in ways which are truth-preserving. We

now describe how this is done for our formulas.

An arity table is a mapping from a set of function names to natural numbers

(“arities”). We say a term, t, is well-formed with respect to an arity table, atbl, if

for every function application within t, (f t1 . . . tn), atbl binds f to n. Likewise,

a formula is well-formed with respect to an arity table when all terms within it are

well-formed. Throughout this discussion, we assume that we have a fixed arity table,

atbl, and we are working with terms and formulas that are well-formed with respect

to it.

A first-order structure, A, establishes the meaning of constants and function

23

applications used within formulas. It consists of a set of mathematical objects called

its universe, |A|; an association for every constant, c, to some element of this universe,

cA; and an association for every function name, f , of arity n, to a total, n-ary function,

fA : |A|n → |A|.

Given a first-order structure, A, an interpretation, I, is a function that maps

every variable, v, to some object, I(v), in |A|. We extend the notion of interpretations

to terms as follows. The interpretation of variables is already established, and the

interpretation of constants is inherited from the first-order structure—that is, I(c) =

cA. For function applications,

I((f t1 . . . tn)) = fA(I(t1), . . . , I(tn)).

Finally, for lambda abbreviations,

I(((lambda (x1 . . . xn) β) t1 . . . tn)) = I ′(β),

where I ′ is the interpretation defined as

I ′(v) =
{
I(ti) if v = xi for some i
I(v) otherwise.

In this way, an interpretation allows us to map any term to an object in the universe,

|A|.

We also extend interpretations to assign truth values—true or false, which

may as well be regarded as existing independently from |A|—to formulas,

I((pequal* t1 t2)) ↔ I(t1) = I(t2)

I((pnot* F)) ↔ ¬I(F)

I((por* F G)) ↔ I(F) ∨ I(G),

and say a formula is valid when every interpretation assigns true to it. Since this

notion of validity is implicitly related to a particular first-order structure, to be precise

24

we may sometimes refer to the validity of a formula, F , in some first-order structure,

A.

A proof is a syntactic object which, beginning from axioms, arrives at some

formula, called its conclusion, by applying rules of inference; the axioms are particu-

lar, distinguished formulas which we know are valid, and rules of inference are certain

syntactic transformations which, given valid formulas to begin with, produce new

formulas which are also valid. The conclusion of any proof is said to be a provable

formula.

2.3 Basic Rules of Inference

We begin with some simple rules of inference. Each rule allows us to prove

some particular formula, given proofs of some related formulas called the premises of

the rule.

Associativity From (por* A (por* B C))
Derive (por* (por* A B) C)

Contraction From (por* A A)
Derive A

Cut From (por* A B) and (por* (pnot* A) C)
Derive (por* B C)

Expansion From B
Derive (por* A B)

Propositional
Schema

From nothing
Derive (por* (pnot* A) A)

It is straightforward to see that these rules are validity-preserving. We also introduce

the rule of Functional Equality: given a function name, f , of arity n, and terms

t1, . . . , tn and s1, . . . , sn, we may derive

25

(por* (pnot* (pequal* t1 s1))
(por* (pnot* (pequal* t2 s2))

. . .
(por* (pnot* (pequal* tn sn))

(pequal* (f t1 t2 . . . tn)
(f s1 s2 . . . sn))) . . .)),

and again it is easy to see this rule only allows us to derive valid formulas.

Before introducing our next rules of inference, we need to define substitution.

A substitution list, σ, is a mapping from some finite number of variables to terms. We

write σ = [v1 ← t1, . . . , vn ← tn] when σ maps v1, . . . , vn to t1, . . . , tn, respectively,

and we say the substitution of σ into the variable v, written v/σ, is defined as follows:

v/σ =
{
ti for the least i s.t. v = vi, if one exists
v otherwise.

We extend the notion of substitution to arbitrary terms. If t is a variable then t/σ has

already been defined, and if t is a constant then t/σ = t. For function applications,

(f t1 . . . tn)/σ = (f t1/σ . . . tn/σ), and for lambda abbreviations,

((lambda (x1 . . . xn) β) t1 . . . tn)/σ =

((lambda (x1 . . . xn) β) t1/σ . . . tn/σ).

We also extend substitution to formulas, as follows:

(pequal* t1 t2)/σ = (pequal* t1/σ t2/σ)

(pnot* F)/σ = (pnot* F/σ)

(por* F G)/σ = (por* F/σ G/σ).

Now that we have defined substitution, we introduce two additional rules of

inference:

26

Instantiation From A
Derive A/σ

β-Reduction
From nothing
Derive (pequal* ((lambda (x1 . . . xn) β) t1 . . . tn)

β/[x1 ← t1, . . . , xn ← tn])

To show these rules are validity-preserving, we will need a couple of lemmas about

substitution. Our first lemma shows the interpretation of a term depends only upon

the interpretation of its free variables.

Lemma 2.1. ∀I, J : (∀v ∈ freevars(t), I(v) = J(v))→ I(t) = J(t)

Proof by structural induction on t.

The constant and variable cases are trivial.

Suppose t is (f t1 . . . tn), let I, J be arbitrary interpretations, and assume

∀v ∈ freevars(t), I(v) = J(v) so that our goal is to show I(t) = J(t). For each i,

we may inductively assume

(∀v ∈ freevars(ti), I(v) = J(v))→ I(ti) = J(ti),

but since freevars(ti) ⊆ freevars(t), we have

∀v ∈ freevars(ti), I(v) = J(v),

and so we may conclude I(ti) = J(ti). But now,

I(t) = fA(I(t1), . . . , I(tn)) = fA(J(t1), . . . , J(tn)) = J(t).

Finally, suppose t is ((lambda (x1 . . . xn) β) t1 . . . tn), let I, J be arbi-

trary interpretations, and assume ∀v ∈ freevars(t), I(v) = J(v); our goal is to show

27

I(t) = J(t), which is the same as showing I ′(β) = J ′(β), where

I ′(v) =
{
I(ti) if v = xi for some i
I(v) otherwise, and

J ′(v) =
{
J(ti) if v = xi for some i
J(v) otherwise.

Now, for each i, we may inductively assume

(∀v ∈ freevars(ti), I(v) = J(v))→ I(ti) = J(ti),

and as before, since freevars(t) subsumes freevars(ti), we may conclude I(ti) =

J(ti).

We may also inductively assume

(∀v ∈ freevars(β), I ′(v) = J ′(v))→ I ′(β) = J ′(β),

and since freevars(β) ⊆ {x1, . . . , xn}, we arrive at I ′(xi) = I(ti) = J(ti) = J ′(xi),

so we have

∀v ∈ freevars(β), I ′(v) = J ′(v)

and we may conclude I ′(β) = J ′(β), which was our goal.

Our next lemma characterizes how a term’s interpretation is changed by sub-

stitution. We introduce a new bit of notation: when I is an interpretation and σ

is a substitution list, we write Iσ to denote the interpretation defined as follows:

Iσ(v) = I(v/σ).

Lemma 2.2. Iσ(t) = I(t/σ)

Proof by structural induction on t.

The constant and variable cases are trivial.

28

Suppose t is (f t1 . . . tn). For each i we may inductively assume Iσ(ti) =

I(ti/σ). Then,

I(t/σ) = I((f t1 . . . tn)/σ)

= I((f t1/σ . . . tn/σ))

= fA(I(t1/σ), . . . , I(tn/σ))

= fA(Iσ(t1), . . . , Iσ(tn))

= Iσ((f t1 . . . tn)).

Finally, suppose t is ((lambda (x1 . . . xn) β) t1 . . . tn). Then,

I(t/σ) = I(((lambda (x1 . . . xn) β) t1 . . . tn)/σ)

= I(((lambda (x1 . . . xn) β) t1/σ . . . tn/σ))

= I ′(β),

where

I ′(v) =

I(ti/σ) if v = xi for some i
I(v) otherwise.

Meanwhile,

Iσ(t) = Iσ(((lambda (x1 . . . xn) β) t1 . . . tn))

= Iσ
′(β),

where

Iσ
′(v) =

Iσ(ti) if v = xi for some i
Iσ(v) otherwise.

Moreover, Lemma 2.1 will allow us to conclude I ′(β) = Iσ
′(β) if we can show that

I ′(v) = I ′σ(v) for all v ∈ freevars(β). Since freevars(β) ⊆ {x1, . . . , xn}, it suffices

to show I(ti/σ) = Iσ(ti). But this is something we may inductively assume.

29

We now extend Lemma 2.2 to explain how substitution affects the interpreta-

tion of a formula.

Lemma 2.3. Iσ(F)↔ I(F/σ).

Proof by structural induction on F .

If F is (pequal* t1 t2), then

I(F/σ)↔ I(t1/σ) = I(t2/σ)

↔ Iσ(t1) = Iσ(t2) by Lemma 2.2

↔ Iσ(F)

If F is (pnot* G), we may inductively assume I(G/σ)↔ Iσ(G), and

I(F/σ)↔ I((pnot* G/σ))

↔ ¬I(G/σ)

↔ ¬Iσ(G)

↔ Iσ((pnot* G))

↔ Iσ(F).

If F is (por* G H), we may inductively assume I(G/σ) ↔ Iσ(G) and

I(H/σ)↔ Iσ(H), and

I(F/σ)↔ I((por* G/σ H/σ))

↔ I(G/σ) ∨ I(H/σ)

↔ Iσ(G) ∨ Iσ(H)

↔ Iσ((por* G H))

↔ Iσ(F).

30

With these lemmas in place, we can now establish that instantiation and β-

reduction are validity-preserving.

Theorem 2.4. The instantiation rule is validity-preserving.

Proof. Suppose A is a valid formula. We want to show I(A/σ) holds for every inter-

pretation, I. This is quite simple,

I(A/σ)↔ Iσ(A) by Lemma 2.3

↔ true by the validity of A

Theorem 2.5. The β-reduction rule is validity-preserving.

Proof. Let σ = [x1 ← t1, . . . , xn ← tn]; we want to show, for every interpretation I,

I(((lambda (x1 . . . xn) β) t1 . . . tn)) = I(β/σ),

which is the same as I ′(β) = I(β/σ), where

I ′(v) =

I(ti) if v = xi for some i
I(v) otherwise,

which by Lemma 2.2 is the same as I ′(β) = Iσ(β).

This follows from Lemma 2.1 if we can establish I ′(v) = Iσ(v) for all v ∈

freevars(β). In fact, since freevars(β) ⊆ {x1, . . . , xn}, it suffices to show I ′(xi) =

Iσ(xi) for all i. But this is straightforward:

I ′(xi) = I(ti) = I(xi/σ) = Iσ(xi).

2.4 Primitive Functions

We now axiomatize the behavior of twelve primitive functions which will be

used as building blocks for recursive definitions. The names and arities of our primi-

tive functions are listed in the following table.

31

if 3 natp 1 consp 1
equal 2 < 2 cons 2
symbolp 1 + 2 car 1
symbol-< 2 - 2 cdr 1

In a moment we will introduce a list of axioms that characterize the behaviors

of these functions, but first we would like to explain their intended semantics. Recall

that meaning is ascribed to function names via a first-order structure, A. And so,

below, we describe the first-order structures which capture our intended semantics

for these primitives, which we call the standard structures.

The atoms are the naturals, N, and the ASCII strings, S; the standard universe,

U, is the recursive closure of the atoms under ordered pairing. The non-atoms of U

are called conses. We write the cons (ordered pair) of a and b as (a . b), and we

adopt some abbreviations which are similar to those for token trees:

Abbreviation Meaning
() NIL
(x) (x . NIL)
(x1 x2 . . . xn) (x1 . (x2 . . . xn))
(x1 x2 . . . xn . b) (x1 . (x2 . . . xn . b))

In a standard structure, the universe is the standard universe (i.e., |A| = U)

and the constants are mapped to |A| as follows. For every numeric token n, (’n)A is

the corresponding natural number; for instance, (’0)A = 0, (’1)A = 1, and so on. For

every symbolic token, s, sA is the corresponding ASCII string; for instance (’foo)A =

FOO, (’bar)A = BAR, etc. Finally, for compound token trees, (’(a . b))A is the

ordered pair, (’aA . ’bA). Note the one-to-one correspondence between the constants

and the elements of U.

We now introduce several total functions on U. We write� to denote the strict

lexicographic ordering on ASCII strings, and write 	 for natural-number subtraction,

32

e.g., 3	 5 = 0.

natfix(x) =

x if x ∈ N
0 otherwise,

symfix(x) =

x if x ∈ S
NIL otherwise,

if(x, y, z) =

y if x 6= NIL
z otherwise,

equal(x, y) =

T if x = y

NIL otherwise,

symbolp(x, y) =

T if x ∈ S
NIL otherwise,

symbol-<(x, y) =

T if symfix(x)� symfix(y)
NIL otherwise,

natp(x) =

T if x ∈ N
NIL otherwise,

lessp(x, y) =

T if natfix(x) < natfix(y)
NIL otherwise,

plus(x, y) = natfix(x) + natfix(y),

minus(x, y) = natfix(x)	 natfix(x),

consp(x) =

T if x is an ordered pair
NIL otherwise,

cons(x, y) = (x . y),

car(x) =

a if x is an ordered pair, (a . b)
NIL otherwise, and

cdr(x) =

b if x is an ordered pair, (a . b)
NIL otherwise.

33

A standard structure maps the primitives to these functions as follows.

ifA(x, y, z) = if(x, y, z),

equalA(x, y) = equal(x, y),

symbolpA(x) = symbolp(x),

symbol-<A(x, y) = symbol-<(x, y),

natpA(x) = natp(x),

<A(x, y) = lessp(x, y),

+A(x, y) = plus(x, y),

-A(x, y) = minus(x, y),

conspA(x) = consp(x),

consA(x, y) = cons(x, y),

carA(x) = car(x), and

cdrA(x) = cdr(x).

We now introduce several axioms to capture the behavior of these primitives.

It is straightforward to see that these formulas are valid in any standard structure.

Axiom 1. reflexivity
(pequal* x x)

Axiom 2. equality
(por* (pnot* (pequal* x1 y1))

(por* (pnot* (pequal* x2 y2))
(por* (pnot* (pequal* x1 x2))

(pequal* y1 y2))))

Axiom 3. t-not-nil
(pnot* (pequal* ’t ’nil))

34

Axiom 4. equal-when-same
(por* (pnot* (pequal* x y))

(pequal* (equal x y) ’t))

Axiom 5. equal-when-diff
(por* (pequal* x y)

(pequal* (equal x y) ’nil))

Axiom 6. if-when-nil
(por* (pnot* (pequal* x ’nil))

(pequal* (if x y z) z))

Axiom 7. if-when-not-nil
(por* (pequal* x ’nil)

(pequal* (if x y z) y))

Axiom 8. consp-of-cons
(pequal* (consp (cons x y)) ’t)

Axiom 9. car-of-cons
(pequal* (car (cons x y)) x)

Axiom 10. cdr-of-cons
(pequal* (cdr (cons x y)) y)

Axiom 11. consp-nil-or-t
(por* (pequal* (consp x) ’nil)

(pequal* (consp x) ’t))

Axiom 12. car-when-not-consp
(por* (pnot* (pequal* (consp x) ’nil))

(pequal* (car x) ’nil))

35

Axiom 13. cdr-when-not-consp
(por* (pnot* (pequal* (consp x) ’nil))

(pequal* (cdr x) ’nil))

Axiom 14. cons-of-car-and-cdr
(por* (pequal* (consp x) ’nil)

(pequal* (cons (car x) (cdr x)) x))

Axiom 15. symbolp-nil-or-t
(por* (pequal* (symbolp x) ’nil)

(pequal* (symbolp x) ’t))

Axiom 16. symbol-<-nil-or-t
(por* (pequal* (symbol-< x y) ’nil)

(pequal* (symbol-< x y) ’t))

Axiom 17. irreflexivity-of-symbol-<
(pequal* (symbol-< x x) ’nil)

Axiom 18. antisymmetry-of-symbol-<
(por* (pequal* (symbol-< x y) ’nil)

(pequal* (symbol-< y x) ’nil))

Axiom 19. transitivity-of-symbol-<
(por* (pequal* (symbol-< x y) ’nil)

(por* (pequal* (symbol-< y z) ’nil)
(pequal* (symbol-< x z) ’t)))

Axiom 20. trichotomy-of-symbol-<
(por* (pequal* (symbolp x) ’nil)

(por* (pequal* (symbolp y) ’nil)
(por* (pequal* (symbol-< x y) ’t)

(por* (pequal* (symbol-< y x) ’t)

36

(pequal* x y)))))

Axiom 21. symbol-<-completion-left
(por* (pequal* (symbolp x) ’t)

(pequal* (symbol-< x y)
(symbol-< ’nil y)))

Axiom 22. symbol-<-completion-right
(por* (pequal* (symbolp y) ’t)

(pequal* (symbol-< x y)
(symbol-< x ’nil)))

Axiom 23. disjoint-symbols-and-naturals
(por* (pequal* (symbolp x) ’nil)

(pequal* (natp x) ’nil))

Axiom 24. disjoint-symbols-and-conses
(por* (pequal* (symbolp x) ’nil)

(pequal* (consp x) ’nil))

Axiom 25. disjoint-naturals-and-conses
(por* (pequal* (natp x) ’nil)

(pequal* (consp x) ’nil))

Axiom 26. natp-nil-or-t
(por* (pequal* (natp x) ’nil)

(pequal* (natp x) ’t))

Axiom 27. natp-of-plus
(pequal* (natp (+ a b)) ’t)

Axiom 28. commutativity-of-+
(pequal* (+ a b) (+ b a))

37

Axiom 29. associativity-of-+
(pequal* (+ (+ a b) c)

(+ a (+ b c)))

Axiom 30. plus-when-not-natp-left
(por* (pequal* (natp a) ’t)

(pequal* (+ a b) (+ ’0 b)))

Axiom 31. plus-of-zero-when-natural
(por* (pequal* (natp a) ’nil)

(pequal* (+ a ’0) a))

Axiom 32. <-nil-or-t
(por* (pequal* (< x y) ’nil)

(pequal* (< x y) ’t))

Axiom 33. irreflexivity-of-<
(pequal* (< a a) ’nil)

Axiom 34. less-of-zero-right
(pequal* (< a ’0) ’nil)

Axiom 35. less-of-zero-left-when-natp
(por* (pequal* (natp a) ’nil)

(pequal* (< ’0 a)
(if (equal a ’0) ’nil ’t)))

Axiom 36. less-completion-left
(por* (pequal* (natp a) ’t)

(pequal* (< a b)
(< ’0 b)))

38

Axiom 37. less-completion-right
(por* (pequal* (natp b) ’t)

(pequal* (< a b)
’nil))

Axiom 38. transitivity-of-<
(por* (pequal* (< a b) ’nil)

(por* (pequal* (< b c) ’nil)
(pequal* (< a c) ’t)))

Axiom 39. trichotomy-of-<-when-natp
(por* (pequal* (natp a) ’nil)

(por* (pequal* (natp b) ’nil)
(por* (pequal* (< a b) ’t)

(por* (pequal* (< b a) ’t)
(pequal* a b)))))

Axiom 40. one-plus-trick
(por* (pequal* (< a b) ’nil)

(pequal* (< b (+ ’1 a)) ’nil))

Axiom 41. natural-less-than-one-is-zero
(por* (pequal* (natp a) ’nil)

(por* (pequal* (< a ’1) ’nil)
(pequal* a ’0)))

Axiom 42. less-than-of-plus-and-plus
(pequal* (< (+ a b) (+ a c))

(< b c))

Axiom 43. natp-of-minus
(pequal* (natp (- a b)) ’t)

39

Axiom 44. minus-when-subtrahend-as-large
(por* (pequal* (< b a) ’t)

(pequal* (- a b) ’0))

Axiom 45. minus-cancels-summand-right
(pequal* (- (+ a b) b)

(if (natp a) a ’0))

Axiom 46. less-of-minus-left
(por* (pequal* (< b a) ’nil)

(pequal* (< (- a b) c)
(< a (+ b c))))

Axiom 47. less-of-minus-right
(pequal* (< a (- b c))

(< (+ a c) b))

Axiom 48. plus-of-minus-right
(por* (pequal* (< c b) ’nil)

(pequal* (+ a (- b c))
(- (+ a b) c)))

Axiom 49. minus-of-minus-right
(por* (pequal* (< c b) ’nil)

(pequal* (- a (- b c))
(- (+ a c) b)))

Axiom 50. minus-of-minus-left
(pequal* (- (- a b) c)

(- a (+ b c)))

Axiom 51. equal-of-minus-property
(por* (pequal* (< b a) ’nil)

(pequal* (equal (- a b) c)

40

(equal a (+ b c))))

Axiom 52. closed-universe
(por* (pequal* (natp x) ’t)

(por* (pequal* (symbolp x) ’t)
(pequal* (consp x) ’t)))

These axioms can be used to reason symbolically about the primitives, but

we also need a mechanism for explaining how the primitives operate on particular,

concrete values. For this, we introduce the base evaluation rule of inference: when

f is a primitive function of arity n, and c1, . . . , cn are constants, we may derive

(pequal* (f c1 . . . cn) ’x),

where ’x is the constant which satisfies fA(c1
A, . . . , cn

A) = (’x)A in a standard

structure. For instance, using base evaluation, we may derive formulas such as

(pequal* (+ ’3 ’5) ’8) and (pequal* (cons ’a ’b) ’(a . b)). It is trivial to

see that the base evaluation rule only allows us to prove formulas which are valid in

a standard structure.

2.5 Abbreviations

It is not convenient to write programs in terms of the primitives alone, so we

adopt some abbreviations which make certain terms easier to write.

Recall that the numeric tokens, the symbol t, and the symbol nil are not

terms. Since we often wish to use numeric constants and the constants ’t and ’nil

in terms, we adopt a convention wherein every numeric token, n, may be used as an

abbreviation for ’n, t abbreviates ’t, and nil abbreviates ’nil.

We often wish to work with lists of elements. Following the convention from

Lisp, we typically represent the empty list as NIL, and represent the list of x1, . . . , xn

41

as (x1 x2 . . . xn). In a standard structure, the following abbreviations allow us to

access the leading elements of such a list, or produce NIL when the list is not long

enough.

Abbreviation Meaning
(first x) (car x)
(second x) (first (cdr x))
(third x) (second (cdr x))
(fourth x) (third (cdr x))
(fifth x) (fourth (cdr x))

Meanwhile, the abbreviation list may be used to construct a list from an arbitrary

number of arguments.

Abbreviation Meaning
(list) nil
(list x1) (cons x1 nil)
(list x1 . . . xn) (cons x1 (list x2 . . . xn))

The primitive control structure, if, interprets NIL as false and any other

object as true. We define the abbreviation and as a way to ask if a litany of arguments

are all non-NIL, and the abbreviation or as a way to ask if at least some argument

is non-NIL. Following the convention from Lisp, and returns its final argument when

all of its arguments are non-NIL, and or returns its first non-NIL argument when one

exists.

Abbreviation Meaning
(and) t
(and x1) x1
(and x1 . . . xn) (if x1 (and x2 . . . xn) nil)
(or) nil
(or x1) x1
(or x1 . . . xn) (if x1 x1 (or x2 . . . xn))

Case-structured if-expressions can be introduced using cond, which takes a list

of conditions and results as arguments, and returns the first result whose condition

42

evaluates to non-NIL, or NIL if all of the conditions evaluate to NIL. That is, (cond)

abbreviates nil, while

(cond (cond1 result1) . . . (condn resultn))

abbreviates

(if cond1 result1 (cond (cond2 result2) . . . (condn resultn))).

Lambda abbreviations are particularly cumbersome to write due to the require-

ment that every free variable be bound. To make this easier, given unique variables

var1 , . . . , varn,

(let ((var1 term1) . . . (varn termn)) β)

is an abbreviation for

((lambda (x1 . . . xm var1 . . . varn) β) x1 . . . xm term1 . . . termn),

where x1, . . . , xm are the free variables of β besides var1, . . . , varn in lexicographic

order. In other words, let is like a lambda which implicitly binds all of the unbound

variables in β to themselves.

Finally, let abbreviations effectively bind var1, . . . , varn simultaneously. That

is, the new value for var1 cannot be used in term2 to define var2, and so on. This

is sometimes inconvenient, so as an alternative, the abbreviation let* introduces a

series of lambdas which bind each variable in order. It is convenient to define the

abbreviation let* in terms of let. That is, (let* () β) abbreviates β, while

(let* ((var1 term1) . . . (varn termn)) β)

abbreviates

(let ((var1 term1))
(let* ((var2 term2) . . . (varn termn))
β)).

43

2.6 Defining Functions with Axioms

Before proceeding further, we would like to introduce some additional functions

in terms of the primitives. In order to reason about these new functions, we add

definitional axioms which describe their behavior.

The function not may be used to negate its argument in the sense of if, where

NIL is considered to be false and any non-NIL object is considered true. This function

provides a term-level notion of equality, not provides a term-level notion of negation,

whereas pnot* is a formula-level concept. The definitional axiom for not is:

Axiom 53. definition-of-not
(pequal* (not x)

(if x nil t))

If A is any standard structure in which this axiom is valid, then the behavior

of notA has been completely specified and notA must be a particular function, which

we will name not. Why is this? If definition-of-not is valid, then

∀I, I((not x)) = I((if x nil t)),

which is the same as

∀I, notA(I(x)) = if(I(x),NIL,T).

But given any x ∈ U, we can pick an interpretation which maps x to x, and so we

may conclude

notA(x) = if(x,NIL,T),

which, by the definition of if, leads to:

not(x) = notA(x) =

NIL if x 6= NIL
T otherwise.

44

The behavior of recursive functions may also be captured with definitional

axioms. For instance, the function rank may be used to count the number of conses

in an object. The definitional axiom for rank is:

Axiom 54. definition-of-rank
(pequal* (rank x)

(if (consp x)
(+ 1

(+ (rank (car x))
(rank (cdr x))))

0))

It is only slightly more complicated to see that rankA(x) = rank(x), where

rank is recursively defined as

rank(x) =

0 if x is an atom
1 + rank(a) + rank(b) otherwise, where x is (a . b).

We begin as before. Since definition-of-rank is valid,

∀I, I((rank x)) = I

(if (consp x)

(+ 1
(+ (rank (car x))

(rank (cdr x))))
0))

 ,

which is the same as

∀I, rankA(I(x)) = if

consp(I(x)),

plus
(

1,plus
(

rankA(car(I(x)),
rankA(cdr(I(x))

))
,

0

 .

Once again, we can choose an interpretation which maps I(x) to x for any choice of

x, and so we have

rankA(x) = if

consp(x),

plus
(

1,plus
(

rankA(car(x)),
rankA(cdr(x))

))
,

0

 ,

45

which, applying definitions, is just

rankA(x) =

0 if x is an atom 1 + natfix(rankA(a))

+ natfix(rankA(b))

 otherwise, where x = (a . b).

Finally, we proceed by structural induction on U to show that rankA(x) = rank(x)

for all x ∈ U. The basis, when x is an atom, is trivial. Otherwise, inductively

assuming rankA(a) = rank(a) and that rankA(b) = rank(b),

rank((a . b)) = 1 + rank(a) + rank(b)

= 1 + natfix(rank(a)) + natfix(rank(b))

= 1 + rankA(a) + rankA(b)

= rankA(x).

2.7 Ordinals

Our induction rule relies upon a Cantor normal form encoding of the ordinals

under ε0 into U, and is adapted from the ACL2 implementation of ordinals developed

by Manolios and Vroon. [62] These ordinals may be written, uniquely, as sums of the

form k1ω
α1 +· · ·+knωαn+p, where k1, . . . , kn are non-zero naturals, p is a natural, and

the αi are, recursively, non-zero ordinals, also under ε0, with α1 � α2 � · · · � αn.

When n = 0, this sum is simply p and we encode it in U as p itself. Otherwise,

n > 0 and we encode it as ((ordenc(α1) . k1) . . . (ordenc(αn) . kn) . p), where

ordenc(αi) is the encoding of αi.

We now introduce definitional axioms for ord<, which determines if one en-

coded ordinal is smaller than another, and ordp, which determines if an object is a

valid encoding of an ordinal. Per routine, these axioms completely specify ord<A and

ordpA in any standard structure for which they are valid, and we will name these

functions ord< and ordp.

46

Axiom 55. definition-of-ord<
(pequal* (ord< x y)

(cond ((not (consp x))
(if (consp y)

t
(< x y)))

((not (consp y))
nil)
((not (equal (car (car x))

(car (car y))))
(ord< (car (car x))

(car (car y))))
((not (equal (cdr (car x))

(cdr (car y))))
(< (cdr (car x))

(cdr (car y))))
(t
(ord< (cdr x) (cdr y)))))

Axiom 56. definition-of-ordp
(pequal* (ordp x)

(if (not (consp x))
(natp x)

(and (consp (car x))
(ordp (car (car x)))
(not (equal (car (car x)) 0))
(< 0 (cdr (car x)))
(ordp (cdr x))
(if (consp (cdr x))

(ord< (car (car (cdr x)))
(car (car x)))

t))))

Recall a few definitions from mathematics. A strict partial order, ≺, is a

binary relation which is irreflexive, antisymmetric, and transitive over some set, X.

When x ≺ y we say x is smaller than y and that y is larger than x, and we may

47

also write y � x. A strict total order is a strict partial order which also satisfies the

property of trichotomy, ∀x, y ∈ X, (x = y) ∨ (x ≺ y) ∨ (x � y). A (possibly infinite)

sequence of elements from X, (An) = (a0, a1, . . .) is said to be strictly decreasing when

an � an+1 for all n, and strictly increasing when an ≺ an+1 for all n. The relation

≺ is well-founded on X when every strictly decreasing sequence from X is finite, or

equivalently (assuming the axiom of choice) when every subset of X has a ≺-minimal

element. A well-ordering of X is a well-founded, strict total order.

The crucial property of ord< is that it well-orders the objects recognized by

ordp. To be more precise, it should be clear that ord<(x, y) always returns either

T or NIL, so let us say the relation x ≺ y holds when ord<(x, y) = T. Similarly,

ordp(x) returns T or NIL, so let O be the set {x ∈ U : ordp(x) = T}. We will now

establish that ≺ is a well-ordering of O.

Lemma 2.6 (Irreflexivity). ∀x ∈ O, x ⊀ x.

Proof. We will show this holds for all x ∈ U, which is sufficient since O ⊆ U. The

proof is by structural induction on U. As a basis, if x is an atom, then x ≺ x exactly

when natfix(x) < natfix(x), so by the irreflexivity of <, x ⊀ x. Otherwise, let

x = (a . b). Now x ≺ x precisely when b ≺ b, but we may inductively assume b ⊀ b,

so x ⊀ x.

Lemma 2.7 (Antisymmetry). ∀x, y ∈ O, x ≺ y → y ⊀ x.

Proof. Again we will show this holds for any x, y ∈ U. The proof is by induction on

rank(x) + rank(y). That is, let n be rank(x) + rank(y) and suppose whenever

rank(a) + rank(b) < n, a ≺ b→ b ⊀ a.

48

As a basis, if n = 0 then x and y are atoms, so

x ≺ y = natfix(x) < natfix(y), while

y ≺ x = natfix(y) < natfix(x),

and by the antisymmetry of < we are done.

Otherwise, n > 0 so at least one of x or y is a cons. If only one of x or y

is a cons, our goal is trivial, so for the remainder of the proof assume they are both

conses.

Case 1: car(car(x)) 6= car(car(y)). Let a be car(car(x)) and b be

car(car(y)). Then

x ≺ y = a ≺ b, while

y ≺ x = b ≺ a,

and since we may inductively assume a ≺ b→ b ⊀ a, we are done.

Case 2: car(car(x)) = car(car(y)), cdr(car(x)) 6= cdr(car(y)). Let a

be cdr(car(x)) and b be cdr(car(y)). Then

x ≺ y = natfix(a) < natfix(b), while

y ≺ x = natfix(b) < natfix(a),

so by the antisymmetry of < we are done.

Case 3: car(car(x)) = car(car(y)), cdr(car(x)) = cdr(car(y)) Let a be

cdr(x) and b be cdr(y). Then

x ≺ y = a ≺ b, while

y ≺ x = b ≺ a,

and since we may inductively assume a ≺ b→ b ⊀ a, we are done.

49

Lemma 2.8 (Transitivity). ∀x, y, z ∈ O, x ≺ y ∧ y ≺ z → x ≺ z.

Proof. Again we will show this holds for x, y, z ∈ U. The proof is by induction on

rank(x)+rank(y)+rank(z). That is, suppose rank(x)+rank(y)+rank(z) = n

and inductively suppose if rank(a) + rank(b) + rank(c) < n, a ≺ b, and b ≺ c,

then a ≺ c. Finally, assume x ≺ y and y ≺ z, so our goal is to show x ≺ z.

As a basis, if n = 0, none of x, y, z are conses, and we have:

x ≺ y = natfix(x) < natfix(y),

y ≺ z = natfix(y) < natfix(z), and

x ≺ z = natfix(x) < natfix(z),

so by the transitivity of <, we are done.

Otherwise, n > 0. First, note that z must be a cons: otherwise y ≺ z would

imply y is an atom, x ≺ y would imply x is an atom, and n would be 0. Furthermore,

if x is an atom then x ≺ z is trivial, so assume x is a cons. Finally, since x ≺ y, y

must also be a cons. Now, we let

αx = car(car(x)), kx = cdr(car(x)), βx = cdr(x),
αy = car(car(y)), ky = cdr(car(y)), βy = cdr(y),
αz = car(car(z)), kz = cdr(car(z)), βz = cdr(z),

and proceed by cases.

A. Suppose αx = αy = αz and kx = ky = kz.

By our inductive hypothesis, we may assume βx ≺ βy ∧ βy ≺ βz → βx ≺ βz.

But in this case, x ≺ y = βx ≺ βy, y ≺ z = βy ≺ βz, and x ≺ z = βx ≺ βz, so

we are done.

B. Suppose αx = αy = αz but either kx 6= ky or ky 6= kz.

50

B1. kx 6= ky, ky 6= kz. Since x ≺ y, kx < ky. Since y ≺ z, ky < kz. By the

transitivity of <, kx < kz, and so x ≺ z.

B2. kx 6= ky, ky = kz. Since x ≺ y, kx < ky. By equality substitution, we see

kx < kz. By irreflexivity, kx 6= kz; hence x ≺ z.

B3. kx = ky, ky 6= kz. Since y ≺ z, ky < kz. By equality substitution, kx < kz;

By irreflexivity, kx 6= kz; hence x ≺ z.

C. Suppose either αx 6= αy or αy 6= αz.

C1. αx 6= αy, αy 6= αz. By our inductive hypothesis, we may assume αx ≺ αy∧

αy ≺ αz → αx ≺ αz. But in this case, x ≺ y = αx ≺ αy, y ≺ z = αy ≺ αz,

and x ≺ z = αx ≺ αz, so we are done.

C2. αx 6= αy, αy = αz. Since x ≺ y, αx ≺ αy. By equality substitution,

αx ≺ αz. By irreflexivity, αx 6= αz; hence x ≺ z.

C3. αx = αy, αy 6= αx. Since y ≺ z, αy ≺ αz. By equality substitution,

αx ≺ αz. By irreflexivity, αx 6= αz; hence x ≺ z.

Lemma 2.9 (Trichotomy). ∀x, y ∈ O, (x = y) ∨ (x ≺ y) ∨ (x � y)

Proof. We will actually prove the following, equivalent statement,

∀x, y ∈ U, (x, y ∈ O)→ (x = y ∨ x ≺ y ∨ x � y) ,

by induction on n = rank(x)+rank(y). As a basis, if n = 0 then x and y are atoms

and x, y ∈ O exactly when x, y ∈ N; furthermore x ≺ y = x < y and y ≺ x = y < x,

and by the trichotomy of < over N we are done.

Otherwise, suppose n > 0. If x is an atom then y must be a cons and x ≺ y

and we are done, and similarly if y is an atom then y ≺ x and we are done. So assume

x, y are both conses. Since x, y ∈ O, we may let

51

αx = car(car(x)), kx = cdr(car(x)), βx = cdr(x),
αy = car(car(y)), ky = cdr(car(y)), βy = cdr(y),

and we can see that αx, αy, βx, βy ∈ O and kx, ky ∈ N.

A. Suppose αx = αy, kx = ky.

If βx = βy, then x = y and our goal is met. Otherwise, x ≺ y = βx ≺ βy and

x � y = βx � βy. But inductively, (βx = βy) ∨ (βx ≺ βy) ∨ (βx � βy), so either

x ≺ y or x � y and we are done.

B. Suppose αx = αy, kx 6= ky.

Now x 6= y, and we see that x ≺ y = kx < ky and x � y = kx > ky. Since

kx, ky ∈ N, we know (kx < ky) ∨ (kx > ky), so either x ≺ y or x � y and we are

done.

C. Suppose αx 6= αy.

Now x 6= y, x ≺ y = αx ≺ αy, and x � y = αx � αy. But inductively, we have

(αx = αy) ∨ (αx ≺ αy) ∨ (αx � αy), and so either x ≺ y or x � y and we are

done.

For the proof of well-foundedness, it is convenient to define odepth : O → N,

as follows:

odepth(x) =

0 when x ∈ N
1 + odepth(α) when x = ((α . k) . β).

It should be clear that odepth(x) ∈ N for all x ∈ O and that for any n ∈ N, we can

construct an ordinal x with odepth(x) = n.

Lemma 2.10. ∀x, y ∈ O,odepth(x) < odepth(y)→ x ≺ y.

52

Proof. We will actually prove

∀x, y ∈ U, ((x, y ∈ O)→ (odepth(x) < odepth(y)→ x ≺ y))

by induction on n = rank(x) + rank(y). As a basis, if n = 0 then x, y are atoms

and odepth(x) = odepth(y) = 0, so our goal is vacuously true.

So suppose n > 0. If x is an atom, y must be a cons and the conclusion,

x ≺ y, is trivial. If y is an atom, x must be a cons and the hypothesis odepth(x) <

odepth(y) is false. So assume x and y are both conses, and let αx = car(car(x)),

and αy = car(car(y)). Now, we may inductively assume:

odepth(αx) < odepth(αy)→ αx ≺ αy.

But since odepth(x) < odepth(y) we find that odepth(αx) < odepth(αy), and

so αx ≺ αy. But now, since αx 6= αy, our goal, x ≺ y, reduces to αx ≺ αy, which was

just established.

Corollary 2.11. If a0, a1, · · · ∈ O with a0 � a1 � . . . , then

odepth(a0) ≥ odepth(a1) ≥

Lemma 2.12. If x is a cons, x ∈ O → odepth(cdr(x)) ≤ odepth(x).

Proof. Since x ∈ O and x is a cons, cdr(x) is also an ordinal. If cdr(x) is an

atom then its odepth is 0 and we are trivially done. Otherwise, by the definition of

ordp, cdr(x) ≺ x, and by lemma 2.10 we see that odepth(cdr(x)) can be at most

odepth(x).

Lemma 2.13 (Well-Foundedness). If A = (a0, a1, . . .) with a0, a1, · · · ∈ O and a0 �

a1 � . . . , then A must be finite.

53

Proof. First, note that odepth can be used to stratify O, i.e.,

O =
⋃
n∈N
On, where On = {x ∈ O : odepth(x) ≤ n} ,

so to prove that some property P (x) holds for all x ∈ O, it suffices to prove that

it holds for all x ∈ On for every n. Similarly, if we want to prove some property P

about all sequences of ordinals, i.e., (a0, a1, . . .) where each ai ∈ O, then it suffices to

prove that P holds for all sequences (a0, a1, . . .) where a0 ∈ On, for all n.

Our proof follows this induction scheme. That is, we will show, for all n, that

if (a0, a1, . . .) is a sequence of ordinals with a0 ∈ On, with a0 � a1 � . . . , then A

must be finite. But by Corollary 2.11, we see that every ai is in On. So, it suffices to

show that for all n, if (a0, a1, . . .) is a sequence from On with a0 � a1 � . . . , then A

must be finite.

As a basis, suppose n = 0. Now, odepth(ai) = 0 for each ai, so every ai

is a natural number, and a0 � a1 � . . . is the same as a0 > a1 > Since < is

well-founded on the natural numbers, A must be finite.

Otherwise, suppose n > 0, and that any strictly decreasing sequence from

On−1 is finite. Let D be the set of all infinite, strictly decreasing sequences from On,

and assume toward contradiction that D is nonempty.

Claim: Any member of any sequence of D has an odepth of n.

Proof: Let (d0, d1, . . .) ∈ D, and suppose toward contradiction that there

is some di so that odepth(di) 6= n. By Corollary 2.11, odepth(di) < n, so

(di, di+1, . . .) is a strictly decreasing, infinite sequence from On−1, which by our in-

ductive hypothesis cannot exist. X.

Now, let D0 = {d0 : (d0, d1, . . .) ∈ D}. In other words, take all of the first

elements of these infinite, strictly decreasing sequences from On, and put them into

a set. Since D is nonempty, D0 is also nonempty.

54

Consider the elements d ∈ D0. Since odepth(d) = n, odepth(car(car(d)))

must be n − 1. In other words, car(car(d)) ∈ On−1, and since by our inductive

hypothesis ≺ is well-founded for On−1, we know there is a smallest such element.

Call this element α, and note that at least some d ∈ D0 must have car(car(d)) = α.

Now consider the elements d ∈ D0 with car(car(d)) = α. Since d ∈ O,

we know cdr(car(d0)) ∈ N, and hence there is a smallest such element. Call this

element k, and now note that at least some d ∈ D0 must have car(d) = (α . k).

We are now ready for the main part of the argument. Choose any fixed

(d0, d1, . . .) ∈ D with car(d0) = (α . k)

Claim: car(di) = (α . k) for all i.

Proof: Suppose toward contradiction that j is the first index so that car(dj) 6=

(α . k). Since dj is an ordinal and odepth(dj) = n and n > 0, we know that dj has

the form ((α′ . k′) . β). Furthermore, we know that odepth(α′) = n − 1, by the

definition of odepth. We consider two cases.

Case 1: α 6= α′. Since car(dj−1) = (α . k) and dj ≺ dj−1, we see that

α′ ≺ α. Since (dj, dj+1, . . .) is a strictly decreasing infinite sequence in On, we see that

(dj, dj+1, . . .) ∈ D, and that car(car(dj)) ≺ α, but this contradicts the minimality

of α.

Case 2: α = α′, but k 6= k′. Since car(dj−1) = (α . k) and dj ≺ dj−1, we see

that k′ < k. Since (dj, dj+1, . . .) is a strictly decreasing infinite sequence in On, we

see that (dj, dj+1, . . .) ∈ D with car(car(dj)) = α and cdr(car(dj)) < k, but this

contradicts the minimality of k. X

Now, since car(di) = (α . k) for every i and d0 � d1 � . . . , we are left with

cdr(d0) � cdr(d1) �

Claim: odepth(cdr(di)) = n for all i.

55

Proof: By Lemma 2.12, we see that odepth(cdr(di)) ≤ odepth(di), i.e.,

odepth(cdr(di)) ≤ n, so we only need to show that odepth(cdr(di)) cannot

be strictly less than n. Suppose toward contradiction that there is some i with

odepth(cdr(di)) < n. By Corollary 2.11, odepth(cdr(dj)) < n for all j ≥ i. But

now, cdr(di) � cdr(di+1) � . . . is an infinite sequence in On−1, and by our inductive

hypothesis no such sequence exists. X

As a result, we see that (cdr(d0),cdr(d1), . . .) ∈ D. Furthermore, since

odepth(cdr(d0)) = n, and n > 0, we see that cdr(d0) is a cons, and by the

definition of ordp we know that car(car(cdr(d0))) ≺ car(car(d0)), or, in other

words, car(car(cdr(d0))) ≺ α. This contradicts the minimality of α.

Together, these lemmas establish ≺ is a well-ordering of O.

2.8 Induction

Our induction rule is as follows. Supposem is a term, q1, . . . , qk are formulas,

and for each i = 1 . . . k we have a set of substitution lists, Σi = {σ〈i,1〉, . . . , σ〈i,hi〉}.

Then, we may derive the formula F given proofs of the

basis step,
(por* F (por* q1 (. . . (por* qk−1 qk) . . .)),

inductive steps, for i = 1 . . . k,
(por* F

(por* (pnot* qi)
(por* (pnot* F/σ〈i,1〉)

. . .
(por* (pnot* F/σ〈i,hi−1〉)

(pnot* F/σ〈i,hi〉)) . . .))),

ordinal step,
(pequal* (ordp m) t), and

56

measure steps, for i = 1 . . . k, j = 1 . . . hi,
(por* (pnot* qi) (pequal* (ord< m/σ〈i,j〉 m) t)).

We say a first-order structure, A, is a ground-zero structure when it is a stan-

dard structure that also satisfies the definitional axioms for not, rank, ordp, and

ord<.

Theorem 2.14 (Soundness of Induction). Suppose A is a ground-zero structure and

that F is any formula which can be justified by applying the induction rule to valid

formulas. Then, F is also valid.

Proof. Let m be a term, q1, . . . , qk be formulas, and Σ1, . . . ,Σk be sets of substitution

lists so that F is justified by the induction rule using these choices of m, qi, and

Σi, and assume that the basis step, inductive steps, ordinal step, and measure steps

described above are all valid in A.

Suppose toward contradiction that F is not valid in A. Let A be the set of all

interpretations which invalidate F , i.e., A = {J : ¬J(F)}. Since F is not valid, A is

non-empty. By the validity of the ordinal step, J(m) ∈ O for every interpretation,

and since ≺ is a well-ordering of O, we may let I be an interpretation from A which

gives the ≺-minimal interpretation to m. That is, I is an interpretation in A which

satisfies ∀J ∈ A, I(m) � J(m).

Since the basis step is valid, we have I(q1) ∨ · · · ∨ I(qk) ∨ I(F), and so since

¬I(F), there must be some i for which I(qi) holds. Furthermore, by the validity of

the inductive step for i, along with I(qi) and ¬I(F), we find there must be some j for

which ¬I(F/σ〈i,j〉). Recall from Lemma 2.3 that I(F/σ〈i,j〉) = Iσ〈i,j〉(F), so ¬Iσ〈i,j〉(F),

i.e., Iσ〈i,j〉 ∈ A.

Now, by the validity of the measure step for i and j, along with I(qi), we have

57

I(m/σ〈i,j〉) ≺ I(m). Recall, from Lemma 2.2, that I(m/σ〈i,j〉) = Iσ〈i,j〉(m), and so we

have Iσ〈i,j〉(m) ≺ I(m), contradicting the minimality of I(m).

2.9 Events

To be useful in modeling programs, our logic needs some mechanism for intro-

ducing new concepts. Following the approach of Kaufmann and Moore [53], we say a

history is a possibly empty, finite sequence of events. We associate with every history

an arity table and a collection of formulas, called its axioms, each of which must

be well-formed with respect to this arity table. For the empty history, we associate

the fifty-six numbered axioms listed in the previous sections, and the following arity

table.

if 3 natp 1 consp 1 not 1
equal 2 < 2 cons 2 rank 1
symbolp 1 + 2 car 1 ordp 1
symbol-< 2 - 2 cdr 1 ord< 2

For pragmatic reasons we also associate with every history a collection of formulas,

called its theorems, each of which again must be well-formed with respect to its arity

table. The empty history has no theorems. We say that a formula, φ, is provable

from a history, h, when φ may be derived from the axioms and theorems of h using

the rules of inference.

We allow three kinds of events—theorems, recursive function definitions, and

witnessing function definitions. Each of these has certain criteria for admissibility in

the current history, which ensure the history remains coherent as it is extended. For

instance, only a provable formula may be admitted as a theorem, which ensures the

theorems of a well-formed history are always provable from its axioms.

If h = (e0, . . . , en) is a history, h may be extended with a theorem event, e,

to form a new history, h′ = (e0, . . . , en, e). The event, e, says that some formula,

58

φ, should now be regarded as a theorem. The arity table and axioms of h′ are the

same as those of h, and the theorems of h′ are φ and the theorems of h. For e to be

admissible, φ must be well-formed with respect to the arity table of h and provable

from h.

Alternately, h may be extended with a recursive function definition event, e.

Such an event includes a function name, f ; a list of distinct variables, x1, . . . , xn,

called its formals; a term, β, called its body; and another term, m, called its measure.

The arity table of h′ is formed by extending the arity table of h by associating f

with n, the axioms of h′ are the axioms of h along with the definitional axiom,

(pequal* (f x1 . . . xn) β), and the theorems of h′ are the theorems of h.

There are many requirements for a definition to be admissible in h. To begin,

f must be a new name which is not already in the arity table of h. Furthermore, β

and m must be well-formed with respect to the new arity table, and freevars(β)

and freevars(m) must be subsets of {x1, . . . , xn}. Finally, certain formulas called

the termination obligations, described in a moment, must be provable from h.

The termination obligations are certain formulas whose provability ensures f

describes a terminating computation, and arise when β contains recursive calls of f .

The ordinal obligation,

(pequal* (ordp m) t),

ensures that the measure is an ordinal, while the progress obligations ensure that

during each recursive call, (f a1 . . . an), this measure is being decreased. The

basic idea is to show

(pequal* (ord< m/[x1 ← a1, . . . , xn ← an] m) t),

but generally each recursive call only occurs under certain conditions—for instance,

in the definition of rank,

59

(pequal* (rank x)
(if (consp x)

(+ 1
(+ (rank (car x))

(rank (cdr x))))
0)),

the recursive calls, (rank (car x)) and (rank (cdr x)), only play a role in the

case where (consp x) holds—so we really only need to ensure progress is made when

these conditions are met.

We use call maps to explain when f is called recursively and which conditions

hold during each of these calls. That is, callmap(f, x) takes a function name, f ,

and a term, x, and computes a table associating each recursive call of f in x to a list

of the terms which are said to rule that recursive call. In particular,

– When x is a constant or a variable, there are no recursive calls of f within x,

so callmap(f, x) is empty.

– When x is (if a b c), then callmap(f, x) includes the calls from a, verbatim;

the calls from b, but modified so that a is also a ruler of each call; and the calls

of c, modified so (not a) is also a ruler of each call.

– When x is (f t1 . . . tn), callmap(f, x) associates (f t1 . . . tn) with no

rulers, and also includes the calls from callmap(f, ti).

– When x is any other function call, (g t1 . . . tm), callmap(f, x) is the union

of callmap(f, ti).

– When x is ((lambda (x1 . . . xn) β) t1 . . . tn), its call map includes all calls

in the actuals, i.e., callmap(f, ti), and also includes the modified call map of

β, formed by substituting σ = [x1 ← t1, . . . , xn ← tn] into each call and all

rulers.

60

The progress obligations are determined by examining the callmap for f and its body.

For each recursive call, (f a1 . . . an), associated with the rulers r1, . . . , rm, we have

the obligation

(por* (pequal* (ord< m/σ m) t)
(por* (pequal* r1 nil)

...
(por* (pequal* rm−1 nil)

(pequal* rm nil))) . . .)),

where σ = [x1 ← a1, . . . , xn ← an]. In other words, we must show either that

progress is made and the measure is reduced, or that some ruler is false (and hence

this recursive call does not occur).

Finally, hmay be extended with a witnessing function definition event, e. Such

an event includes a function name, f , a variable, v, called the bound variable, a list of

distinct variables, x1, . . . , xn called the free variables, and a term, β, called its body.

The arity table of h′ is formed by extending the arity table of h by associating f with

n, the theorems of h′ are the theorems of h, and the axioms of h′ are the axioms of

h along with

(por* (pequal* β nil)
(pnot* (pequal* ((lambda (v x1 . . . xn) β)

(f x1 . . . xn) x1 . . . xn)
nil))).

To be admissible in h, f must be a new name which is not already in the arity

table of h, v must not be any of the free variables, β must be well-formed with respect

to the arity table of h and freevars(β) must be a subset of {v, x1, . . . , xn}.

61

Chapter 3

The Proof Checker

We now turn our attention to the development of our proof-checking function.

This function is important in two ways. First, as a mathematical model, it forms the

basis for our notion of provability, and hence it is fundamental to the statement of

our theorem prover’s fidelity. Second, as a program, it is used in the proof-checking

system we develop in the next chapter, and is responsible for checking the proof of

fidelity for the Level 2 proof checker.

The definitions provided in this chapter are admissible events when processed

in order from the empty history. However, we do not wish to complicate this chapter

with termination arguments, so we only refer the reader to the discussion at the end

of Section 4.3.

3.1 Utilities

Our proof checker relies upon a number of auxiliary definitions. Many of these

are general-purpose utilities about arithmetic, lists, etc., which have little to do with

our logic in particular.

We begin with some simple arithmetic functions. Recall from page 23 that

functions in our logic are not typed but are instead defined for all inputs from U.

When non-numeric inputs are encountered by the primitive functions +, -, and <,

they are interpreted as zero, e.g., (+ 1 nil) is provably equal to 1. We call this the

zero convention. Our first function, nfix, performs this interpretation, viz. natural

62

numbers are interpreted as themselves, while other objects from U are coerced to 0.

Definition 1: nfix
(pequal* (nfix x)

(if (natp x)
x

0))

Next, zp, the zero predicate, determines whether its argument is zero when

interpreted as a natural number.

Definition 2: zp
(pequal* (zp x)

(if (natp x)
(equal x 0)

t))

Finally, <= can be used to determine whether a ≤ b. Like our other arithmetic

functions, non-numeric inputs are treated as zeroes.

Definition 3: <=
(pequal* (<= a b)

(not (< b a)))

Now we move on to some list operations. In most typed, functional languages

like ML, there is only one representation of the empty list, nil, and the fundamental

operation, cons, has the signature A×A list → A list. In our logic, as in Lisp, cons is

untyped and can take any arguments from U, so when we talk about lists we usually

mean a particular subset of U, called the true lists: NIL is a true list, and intuitively

represents the empty list; meanwhile (a . b) is a true list whenever b is a true list, and

intuitively represents the list where the element a precedes the elements of b. We can

determine whether an object is a true list with true-listp, the true-list predicate.

63

Definition 4: true-listp
(pequal* (true-listp x)

(if (consp x)
(true-listp (cdr x))

(equal x nil)))

In a moment, we will introduce some basic list operations, such as taking the

length of a list and reversing a list. But first, what should such functions do when

given inputs from U which are not true lists? Earlier, we faced a similar question in

our arithmetic functions, and dealt with it by adopting the zero convention, which

treats non-naturals as zero. For our list functions, we adopt a list-fix convention,

wherein the “cdr-most” position of any object in U is coerced to NIL to produce a

true list. For example, the list-fix of (1 2 3 . 4) is (1 2 3). Just as nfix is

the identity for natural numbers, list-fix leaves true-lists unchanged.

Definition 5: list-fix
(pequal* (list-fix x)

(if (consp x)
(cons (car x)

(list-fix (cdr x)))
nil))

We now introduce a number of familiar list operations that respect the list-fix

convention. The function len computes the number of elements in a list.

Definition 6: len
(pequal* (len x)

(if (consp x)
(+ 1 (len (cdr x)))

0))

We can ask whether some object is an element of a list with memberp, the

membership predicate.

64

Definition 7: memberp
(pequal* (memberp a x)

(if (consp x)
(or (equal a (car x))

(memberp a (cdr x)))
nil))

We can ask whether every member of a list, x, is also a member of another

list, y, using subsetp, the subset predicate.

Definition 8: subsetp
(pequal* (subsetp x y)

(if (consp x)
(and (memberp (car x) y)

(subsetp (cdr x) y))
nil))

We can ask whether a list has distinct members using uniquep.

Definition 9: uniquep
(pequal* (uniquep x)

(if (consp x)
(and (not (memberp (car x) (cdr x)))

(uniquep (cdr x)))
t))

We can append lists together with app. Note that we explicitly list-fix y

in the base case to ensure app always produces a true list.

Definition 10: app
(pequal* (app x y)

(if (consp x)
(cons (car x)

(app (cdr x) y))
(list-fix y)))

65

Finally, we can reverse a list with rev.

Definition 11: rev
(pequal* (rev x)

(if (consp x)
(app (rev (cdr x))

(list (car x)))
nil))

We say an n-tuple is a true list of length n, and the function tuplep may be

used to determine if its argument is an n-tuple.

Definition 12: tuplep
(pequal* (tuplep n x)

(if (zp n)
(equal x nil)

(and (consp x)
(tuplep (- n 1) (cdr x)))))

Another commonly useful data structure in functional programming is the

association list, where associations of keys with values are represented using a list of

(key . value) pairs. Given equal-length lists x = (x1 . . . xn) and y = (y1 . . . yn),

the function pair-lists creates an association list where each xi is associated with

the corresponding yi. When x is shorter than y, the extra elements of y are ignored,

and when x is longer than y, the extra elements of x are paired with NIL.

Definition 13: pair-lists
(pequal* (pair-lists x y)

(if (consp x)
(cons (cons (car x) (car y))

(pair-lists (cdr x) (cdr y)))
nil))

66

Finally, the function lookup retrieves the first (key . value) pair from the

association list, x, whose key is a, or returns NIL if there is no such pair. Since not

every object x ∈ U is a well-formed association list, we interpret x as follows. First,

following the list-fix convention, we treat x as a list of elements. Then, we interpret

each element of x, say e, as a pair, by following the cons-fix convention: if e is already

a cons, it is interpreted as itself; otherwise it is interpreted as (NIL . NIL). This

same convention is followed by car and cdr.

Definition 14: lookup
(pequal* (lookup a x)

(if (consp x)
(if (equal a (car (car x)))

(if (consp (car x))
(car x)

(cons (car (car x)) (cdr (car x))))
(lookup a (cdr x)))

nil))

3.2 Terms

We now develop a way to represent terms. Recall from page 22 that terms are

a subset of the token trees, and that token trees are defined recursively as the closure

of the numeric and symbolic tokens under ordered pairing. Since there is a numeric

token for each member of N and a symbolic token for each member of S, there is a

natural isomorphism which relates the token trees to U. This isomorphism provides a

straightforward way to represent terms as objects: to represent any particular term,

x, we simply use the object to which x corresponds.

Recall that the variables are any symbolic tokens except for t and nil. The

function logic.variablep determines whether some object of U is the representation

67

of a variable. The “logic.” prefix is only used as a naming convention to indicate this

function deals with something from our logic, and has no other special significance.

Definition 15: logic.variablep
(pequal* (logic.variablep x)

(and (symbolp x)
(not (equal x t))
(not (equal x nil))))

We can also determine if every element of a list is a variable, using the function

logic.variable-listp. We again respect the list-fix convention by not requiring

that the list is properly terminated with NIL.

Definition 16: logic.variable-listp
(pequal* (logic.variable-listp x)

(if (consp x)
(and (logic.variablep (car x))

(logic.variable-listp (cdr x)))
t))

Recall that for every token tree, a, we have a constant, (quote a). The

function logic.constantp determines if some object, x ∈ U, is the representation

of a constant; the function logic.constant-listp determines if every element of a

list is a constant.

Definition 17: logic.constantp
(pequal* (logic.constantp x)

(and (tuplep 2 x)
(equal (first x) ’quote)))

Definition 18: logic.constant-listp
(pequal* (logic.constant-listp x)

(if (consp x)
(and (logic.constantp (car x))

68

(logic.constant-listp (cdr x)))
t))

Recall that function names are symbolic tokens besides nil, quote, pequal*,

pnot*, por*, first, second, third, fourth, fifth, and, or, list, cond, let,

and let*. The function logic.function-namep determines if an object in U is the

representation of a function name.

Definition 19: logic.function-namep
(pequal* (logic.function-namep x)

(and (symbolp x)
(not (memberp x ’(nil quote pequal* pnot* por* first

second third fourth fifth and or
list cond let let*)))))

Next, we will develop a way to compute the free variables of a term. This is

somewhat tricky. To determine the free variables of a function application or lambda

abbreviation, we must compute the free variables of the arguments and then union

them all together. But this means we must simultaneously introduce a way to gather

the free variables from a term, and a way to gather the free variables from a list of

terms. We can accomplish this with the standard flag function approach. Such a

function uses an additional argument, typically called the flag, to specify a mode of

operation. Our function, logic.flag-term-vars, can operate in two modes: when

the flag is TERM, it gathers the free variables from a term, and otherwise it gathers

the free variables from a list of terms. For efficient execution on Lisp systems, the

function is also written in a tail-recursive style using an accumulator.

Definition 20: logic.flag-term-vars
(pequal* (logic.flag-term-vars flag x acc)

(if (equal flag ’term)
(cond ((logic.constantp x) acc)

69

((logic.variablep x) (cons x acc))
((not (consp x)) acc)
(t
(logic.flag-term-vars ’list (cdr x) acc)))

(if (consp x)
(logic.flag-term-vars ’term (car x)
(logic.flag-term-vars ’list (cdr x) acc))

acc)))

With the flag function in place, we introduce a simple wrapper, logic.-

term-vars, which computes the free variables of a term without needing a flag or

accumulator as arguments.

Definition 21: logic.term-vars
(pequal* (logic.term-vars x)

(logic.flag-term-vars ’term x nil))

We use another flag function, logic.flag-termp, which determines either (1)

when an object in U represents a term, or (2) when an object in U represents a list

of terms, depending upon the mode of operation specified by its flag.

Definition 22: logic.flag-termp
(pequal*
(logic.flag-termp flag x)
(if (equal flag ’term)

(or (logic.variablep x)
(logic.constantp x)
(and (consp x)

(if (logic.function-namep (car x))
(let ((args (cdr x)))
(and (true-listp args)

(logic.flag-termp ’list args)))
(and (tuplep 3 (car x))

(let ((lambda-symbol (first (car x)))
(formals (second (car x)))

70

(body (third (car x)))
(actuals (cdr x)))

(and (equal lambda-symbol ’lambda)
(true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.flag-termp ’term body)
(subsetp (logic.term-vars body) formals)
(equal (len formals) (len actuals))
(true-listp actuals)
(logic.flag-termp ’list actuals)))))))

(if (consp x)
(and (logic.flag-termp ’term (car x))

(logic.flag-termp ’list (cdr x)))
t)))

We also introduce another wrapper function, logic.termp, which determines

if its argument is a term without needing a flag parameter.

Definition 23: logic.termp
(pequal* (logic.termp x)

(logic.flag-termp ’term x))

For readability and for reasoning, it is useful to define functions to construct

and inspect terms. We can retrieve the value of a constant using logic.unquote,

and the values from a list of constants using logic.unquote-list.

Definition 24: logic.unquote
(pequal* (logic.unquote x)

(second x))

Definition 25: logic.unquote-list
(pequal* (logic.unquote-list x)

(if (consp x)
(cons (logic.unquote (car x))

71

(logic.unquote-list (cdr x)))
nil))

Given a term, logic.functionp determines if it is a function application. We

can access the name and arguments of a function application term using logic.func-

tion-name and logic.function-args, respectively. Finally, we may construct a

function application from a function name and a list of arguments via logic.func-

tion.

Definition 26: logic.functionp
(pequal* (logic.functionp x)

(logic.function-namep (car x)))

Definition 27: logic.function-name
(pequal* (logic.function-name x)

(car x))

Definition 28: logic.function-args
(pequal* (logic.function-args x)

(cdr x))

Definition 29: logic.function
(pequal* (logic.function name args)

(cons name args))

Similarly, given a term, logic.lambdap determines if it is a lambda abbrevi-

ation. We can access the formal parameters, body, and actuals from a lambda ab-

breviation using logic.lambda-formals, logic.lambda-body, and logic.lambda-

-actuals, respectively. Finally, we can construct a lambda abbreviation from a list

of formals, a body, and a list of actuals using the logic.lambda.

72

Definition 30: logic.lambdap
(pequal* (logic.lambdap x)

(consp (car x)))

Definition 31: logic.lambda-formals
(pequal* (logic.lambda-formals x)

(second (car x)))

Definition 32: logic.lambda-body
(pequal* (logic.lambda-body x)

(third (car x)))

Definition 33: logic.lambda-actuals
(pequal* (logic.lambda-actuals x)

(cdr x))

Definition 34: logic.lambda
(pequal* (logic.lambda xs b ts)

(cons (list ’lambda xs b) ts))

We also need a way to determine if terms are well-formed with respect to an

arity table. We represent arity tables as association lists whose keys are function

names and whose values are the corresponding arities. We then use a flag function

to determine (1) whether a term is well-formed with respect to an arity table, or (2)

whether a list of terms are all well-formed with respect to an arity table.

Definition 35: logic.flag-term-atblp
(pequal*
(logic.flag-term-atblp flag x atbl)
(if (equal flag ’term)

(cond ((logic.constantp x) t)
((logic.variablep x) t)
((logic.functionp x)

73

(let ((name (logic.function-name x))
(args (logic.function-args x)))

(and (equal (len args) (cdr (lookup name atbl)))
(logic.flag-term-atblp ’list args atbl))))

((logic.lambdap x)
(let ((body (logic.lambda-body x))

(actuals (logic.lambda-actuals x)))
(and (logic.flag-term-atblp ’term body atbl)

(logic.flag-term-atblp ’list actuals atbl))))
(t nil))

(if (consp x)
(and (logic.flag-term-atblp ’term (car x) atbl)

(logic.flag-term-atblp ’list (cdr x) atbl))
t)))

As usual, we introduce a wrapper, logic.term-atblp, which can determine

if a term is well-formed with respect to an arity table without a flag parameter.

Definition 36: logic.term-atblp
(pequal* (logic.term-atblp x atbl)

(logic.flag-term-atblp ’term x atbl))

3.3 Formulas

Formulas, like terms, are certain token trees, and we again use the isomorphism

between token trees and U to represent formulas. The function logic.formulap

determines whether some object in U represents a formula.

Definition 37: logic.formulap
(pequal* (logic.formulap x)

(cond ((equal (first x) ’pequal*)
(and (tuplep 3 x)

(logic.termp (second x))
(logic.termp (third x))))

74

((equal (first x) ’pnot*)
(and (tuplep 2 x)

(logic.formulap (second x))))
((equal (first x) ’por*)
(and (tuplep 3 x)

(logic.formulap (second x))
(logic.formulap (third x))))

(t nil)))

We can determine if every element of a list represents a formula using the

function logic.formula-listp.

Definition 38: logic.formula-listp
(pequal* (logic.formula-listp x)

(if (consp x)
(and (logic.formulap (car x))

(logic.formula-listp (cdr x)))
t))

We provide some simple accessors for inspecting formulas. Given a formula,

the function logic.fmtype determines its type, returning PEQUAL*, PNOT*, or

POR*. Given an equality, (pequal* lhs rhs), we can retrieve the lhs and rhs using

logic.=lhs and logic.=rhs, respectively. Given a negation, (pnot* arg), we can

retrieve arg using logic.∼arg. Finally, given a disjunction, (por* lhs rhs), we can

obtain the lhs and rhs using logic.vlhs and logic.vrhs. (These odd names are

intended to convey the type of the formula being accessed. That is, the = character

in logic.=lhs and logic.=rhs indicates that we are accessing the left or right hand

sides of an equality, the ∼ in logic.∼arg is intended to suggest that we are accessing

the argument of a negation, and the v in logic.vlhs and logic.vrhs is intended

as an ASCII approximation of the conventional disjunction symbol, ∨.)

75

Definition 39: logic.fmtype
(pequal* (logic.fmtype x)

(first x))

Definition 40: logic.=lhs
(pequal* (logic.=lhs x)

(second x))

Definition 41: logic.=rhs
(pequal* (logic.=rhs x)

(third x))

Definition 42: logic.∼arg
(pequal* (logic.∼arg x)

(second x))

Definition 43: logic.vlhs
(pequal* (logic.vlhs x)

(second x))

Definition 44: logic.vrhs
(pequal* (logic.vrhs x)

(third x))

Similarly, we provide some simple functions for constructing formulas. Given

terms a and b, logic.pequal constructs the equality (pequal* a b). Given a for-

mula a, logic.pnot constructs the negation (pnot* a). Given formula a and b,

logic.por constructs the disjunction (por* a b).

Definition 45: logic.pequal
(pequal* (logic.pequal a b)

(list ’pequal* a b))

76

Definition 46: logic.pnot
(pequal* (logic.pnot a)

(list ’pnot* a))

Definition 47: logic.por
(pequal* (logic.por a b)

(list ’por* a b))

We can determine whether a formula is well-formed with respect to an arity

table using the function logic.formula-atblp.

Definition 48: logic.formula-atblp
(pequal* (logic.formula-atblp x atbl)

(let ((type (logic.fmtype x)))
(cond ((equal type ’por*)

(and (logic.formula-atblp (logic.vlhs x) atbl)
(logic.formula-atblp (logic.vrhs x) atbl)))

((equal type ’pnot*)
(logic.formula-atblp (logic.∼arg x) atbl))
((equal type ’pequal*)
(and (logic.term-atblp (logic.=lhs x) atbl)

(logic.term-atblp (logic.=rhs x) atbl)))
(t nil))))

Finally, given a non-empty list of formulas x1, . . . , xn, we can create the right-

associative disjunction, (por* x1 (por* . . . (por* xn−1 xn) . . .)), using the func-

tion logic.disjoin-formulas.

Definition 49: logic.disjoin-formulas
(pequal* (logic.disjoin-formulas x)

(if (consp x)
(if (consp (cdr x))

(logic.por (car x)
(logic.disjoin-formulas (cdr x)))

77

(car x))
nil))

3.4 Appeals

We now turn our attention to representing and checking proofs. Each step in

a proof will be represented by an appeal. An appeal is either a 2-tuple, 3-tuple, or

4-tuple of the form

(method conclusion [subproofs [extras]]),

where the brackets indicate the subproofs and extras may be omitted when they are

not needed. The method of an appeal is a symbol which indicates which rule of

inference is being used in this proof step, the conclusion is the formula being proven

by this step, the subproofs are a list of appeals which should justify any premises

needed by this rule, and the extras are any additional, non-proof information being

used by this step. For instance, in an instantiation step the extras will contain the

substitution list being used.

The flag function logic.flag-appealp may be used to determine if an ob-

ject is (1) a valid appeal, or (2) a valid list of appeals, based upon the mode of

operation specified by its flag parameter. We also provide two wrapper functions,

logic.appealp and logic.appeal-listp, which determine if their argument is a

valid appeal or list of appeals, respectively, without a flag.

Definition 50: logic.flag-appealp
(pequal* (logic.flag-appealp flag x)

(if (equal flag ’proof)
(and (true-listp x)

(<= (len x) 4)
(symbolp (first x))

78

(logic.formulap (second x))
(true-listp (third x))
(logic.flag-appealp ’list (third x)))

(if (consp x)
(and (logic.flag-appealp ’proof (car x))

(logic.flag-appealp ’list (cdr x)))
t)))

Definition 51: logic.appealp
(pequal* (logic.appealp x)

(logic.flag-appealp ’proof x))

Definition 52: logic.appeal-listp
(pequal* (logic.appeal-listp x)

(logic.flag-appealp ’list x))

We also introduce simple accessors for appeals. Note that logic.subproofs

and logic.extras will return NIL when these components have been omitted from

an appeal.

Definition 53: logic.method
(pequal* (logic.method x)

(first x))

Definition 54: logic.conclusion
(pequal* (logic.conclusion x)

(second x))

Definition 55: logic.subproofs
(pequal* (logic.subproofs x)

(third x))

79

Definition 56: logic.extras
(pequal* (logic.extras x)

(fourth x))

Given a list of appeals, the function logic.strip-conclusions can be used

to extract a list of their conclusions.

Definition 57: logic.strip-conclusions
(pequal* (logic.strip-conclusions x)

(if (consp x)
(cons (logic.conclusion (car x))

(logic.strip-conclusions (cdr x)))
nil))

3.5 Step Checking

We now introduce several functions which determine whether an appeal is

a valid proof step according to the rules of our logic. Each step-checker is also

responsible for ensuring that its conclusion is well-formed with respect to an arity

table, given that the conclusions of its subproofs are similarly well-formed.

To begin, the function logic.axiom-okp checks whether an appeal is a valid

use of an axiom. Since the set of axioms may grow as we extend the history, it takes a

list of the current axioms as a parameter. We say an appeal is a valid use of an axiom

when its method is AXIOM, its conclusion is among the given axioms, and it has no

subproofs or extras. We explicitly check to ensure that the formula is well-formed

with respect to an arity table.

Definition 58: logic.axiom-okp
(pequal* (logic.axiom-okp x axioms atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))

80

(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’axiom)
(equal subproofs nil)
(equal extras nil)
(memberp conclusion axioms)
(logic.formula-atblp conclusion atbl))))

The function logic.theorem-okp is quite similar, and checks whether an

appeal is the valid use of a theorem. Such an appeal is valid when its method is

THEOREM, its conclusion is in the list of theorems, it has no subproofs or extras,

and its conclusion is well-formed with respect to the arity table.

Definition 59: logic.theorem-okp
(pequal* (logic.theorem-okp x thms atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’theorem)
(equal subproofs nil)
(equal extras nil)
(memberp conclusion thms)
(logic.formula-atblp conclusion atbl))))

Recall from page 25 the associativity rule of inference, which allows us to de-

rive (por* (por* A B) C) from the premise (por* A (por* B C)). We say an

appeal is a valid use of this rule when its method is ASSOCIATIVITY, it has a single

subproof which is appropriately related to its conclusion, and it has no extras. The

function logic.associativity-okp determines if an appeal satisfies these condi-

tions. We do not check the formula against an arity table, since if the subproof’s

conclusion is well-formed, then the new conclusion must also be well-formed.

81

Definition 60: logic.associativity-okp
(pequal*
(logic.associativity-okp x)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’associativity)
(equal extras nil)
(tuplep 1 subproofs)
(let ((sub-or-a-b-c (logic.conclusion (first subproofs))))
(and (equal (logic.fmtype conclusion) ’por*)

(equal (logic.fmtype sub-or-a-b-c) ’por*)
(let ((conc-or-a-b (logic.vlhs conclusion))

(conc-c (logic.vrhs conclusion))
(sub-a (logic.vlhs sub-or-a-b-c))
(sub-or-b-c (logic.vrhs sub-or-a-b-c)))

(and (equal (logic.fmtype conc-or-a-b) ’por*)
(equal (logic.fmtype sub-or-b-c) ’por*)
(let ((conc-a (logic.vlhs conc-or-a-b))

(conc-b (logic.vrhs conc-or-a-b))
(sub-b (logic.vlhs sub-or-b-c))
(sub-c (logic.vrhs sub-or-b-c)))

(and (equal conc-a sub-a)
(equal conc-b sub-b)
(equal conc-c sub-c))))))))))

Recall from page 25 the contraction rule, which allows us to derive A from the

premise (por* A A). We say an appeal is a valid use of this rule when its method

is CONTRACTION, it has a single subproof of the form (por* A A), its conclusion

is A, and it has no extras. The function logic.contraction-okp checks whether

an appeal satisfies these conditions. As for associativity steps, no arity checking is

needed for contraction steps.

82

Definition 61: logic.contraction-okp
(pequal* (logic.contraction-okp x)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’contraction)
(equal extras nil)
(tuplep 1 subproofs)
(let ((or-a-a (logic.conclusion (first subproofs))))
(and (equal (logic.fmtype or-a-a) ’por*)

(equal (logic.vlhs or-a-a) conclusion)
(equal (logic.vrhs or-a-a) conclusion))))))

Recall from page 25 the cut rule, which allows us to conclude (por* B C)

from proofs of the premises (por* A B) and (por* (pnot* A) C). An appeal

is valid according to this rule when its method is CUT, it has two subproofs which

match its conclusion in the appropriate way, and it has no extras. Again, no arity

checking is needed.

Definition 62: logic.cut-okp
(pequal*
(logic.cut-okp x)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’cut)
(equal extras nil)
(tuplep 2 subproofs)
(let ((or-a-b (logic.conclusion (first subproofs)))

(or-not-a-c (logic.conclusion (second subproofs))))
(and (equal (logic.fmtype or-a-b) ’por*)

(equal (logic.fmtype or-not-a-c) ’por*)
(let ((a (logic.vlhs or-a-b))

83

(b (logic.vrhs or-a-b))
(not-a (logic.vlhs or-not-a-c))
(c (logic.vrhs or-not-a-c)))

(and (equal (logic.fmtype not-a) ’pnot*)
(equal (logic.∼arg not-a) a)
(equal (logic.fmtype conclusion) ’por*)
(equal (logic.vlhs conclusion) b)
(equal (logic.vrhs conclusion) c))))))))

Recall from page 25 the expansion rule, which given the premise B allows

us to derive (por* A B). An appeal is valid under this rule when its method is

EXPANSION, it has a single subproof which is appropriately related to its conclusion,

and it has no extras. Since the A portion of the conclusion is new, we check to ensure

it is well-formed with respect to the arity table.

Definition 63: logic.expansion-okp
(pequal* (logic.expansion-okp x atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’expansion)
(equal extras nil)
(tuplep 1 subproofs)
(let ((b (logic.conclusion (first subproofs))))
(and (equal (logic.fmtype conclusion) ’por*)

(equal (logic.vrhs conclusion) b)
(logic.formula-atblp (logic.vlhs conclusion)

atbl))))))

Recall from page 25 the propositional schema, which has no premises and

allows us to derive (por* (pnot* A) A). An appeal is a a valid use of this rule when

its method is PROPOSITIONAL-SCHEMA, its conclusion has the proper shape, and

84

it has no subproofs or extras. We also check that A is well-formed with respect to

the arity table.

Definition 64: logic.propositional-schema-okp
(pequal* (logic.propositional-schema-okp x atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’propositional-schema)
(equal subproofs nil)
(equal extras nil)
(equal (logic.fmtype conclusion) ’por*)
(let ((not-a (logic.vlhs conclusion))

(a (logic.vrhs conclusion)))
(and (equal (logic.fmtype not-a) ’pnot*)

(equal (logic.∼arg not-a) a)
(logic.formula-atblp a atbl))))))

Recall from page 25 the functional equality rule, which allows us to derive,

from no premises, a formula of the form

(por* (pnot* (pequal* t1 s1))
(por* (pnot* (pequal* t2 s2))

. . .
(por* (pnot* (pequal* tn sn))

(pequal* (f t1 t2 . . . tn)
(f s1 s2 . . . sn))) . . .)).

where f is a function name, t1, . . . , tn and s1, . . . , sn are terms.

We use the function logic.check-functional-axiom to determine if a for-

mulas has this shape. We process one (pnot* (pequal* ti si)) term at each step.

That is, if we find a por*-type formula, its left-hand side must be of the form

(pnot* (pequal* ti si)); if so, we record the particular terms, ti and si, which

85

have been encountered, and recursively check the right-hand side. Eventually, we

must reach a pequal*-type formula, which must be

(pequal* (f t1 . . . tn) (f s1 . . . sn)),

where the ti and si are the terms we have recorded along the way.

Definition 65: logic.check-functional-axiom
(pequal*
(logic.check-functional-axiom x ti si)
(if (equal (logic.fmtype x) ’pequal*)

(and (logic.functionp (logic.=lhs x))
(logic.functionp (logic.=rhs x))
(equal (logic.function-name (logic.=lhs x))

(logic.function-name (logic.=rhs x)))
(equal (logic.function-args (logic.=lhs x)) (rev ti))
(equal (logic.function-args (logic.=rhs x)) (rev si)))

(and (equal (logic.fmtype x) ’por*)
(equal (logic.fmtype (logic.vlhs x)) ’pnot*)
(equal (logic.fmtype (logic.∼arg (logic.vlhs x))) ’pequal*)
(logic.check-functional-axiom
(logic.vrhs x)
(cons (logic.=lhs (logic.∼arg (logic.vlhs x))) ti)
(cons (logic.=rhs (logic.∼arg (logic.vlhs x))) si)))))

An appeal is a valid use of the functional equality rule when its method is

FUNCTIONAL-EQUALITY, its conclusion has the proper shape, has no subproofs

or extras, and has the proper arity.

Definition 66: logic.functional-equality-okp
(pequal* (logic.functional-equality-okp x)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

86

(and (equal method ’functional-equality)
(equal subproofs nil)
(equal extras nil)
(logic.check-functional-axiom conclusion nil nil)
(logic.formula-atblp conclusion atbl))))

Before we can check instantiation and β-reduction steps, we will need to define

substitution. We represent substitution lists using association lists whose keys are

variables and whose values are terms. We can determine whether some object in U is

a substitution list with logic.sigmap, the sigma predicate. We can also determine

if an object is a list of substitution lists using logic.sigma-listp. Finally, we can

determine if an object is a list of lists of substitution lists with logic.sigma-list-

listp.

Definition 67: logic.sigmap
(pequal* (logic.sigmap x)

(if (consp x)
(and (consp (car x))

(logic.variablep (car (car x)))
(logic.termp (cdr (car x)))
(logic.sigmap (cdr x)))

t))

Definition 68: logic.sigma-listp
(pequal* (logic.sigma-listp x)

(if (consp x)
(and (logic.sigmap (car x))

(logic.sigma-listp (cdr x)))
nil))

Definition 69: logic.sigma-list-listp
(pequal* (logic.sigma-list-listp x)

(if (consp x)

87

(and (logic.sigma-listp (car x))
(logic.sigma-list-listp (cdr x)))

nil))

The flag function logic.flag-substitute may be used to (1) apply a sub-

stitution list to a term, or (2) apply a substitution list to a list of terms, depending

upon the mode of operation specified by its flag parameter.

Definition 70: logic.flag-substitute
(pequal*
(logic.flag-substitute flag x sigma)
(if (equal flag ’term)

(cond ((logic.variablep x)
(if (lookup x sigma)

(cdr (lookup x sigma))
x))

((logic.constantp x)
x)
((logic.functionp x)
(let ((fn (logic.function-name x))

(args (logic.function-args x)))
(logic.function fn (logic.flag-substitute ’list

args
sigma))))

((logic.lambdap x)
(let ((formals (logic.lambda-formals x))

(body (logic.lambda-body x))
(actuals (logic.lambda-actuals x)))

(logic.lambda formals body
(logic.flag-substitute ’list

actuals
sigma))))

(t nil))
(if (consp x)

(cons (logic.flag-substitute ’term (car x) sigma)
(logic.flag-substitute ’list (cdr x) sigma))

88

nil)))

As usual, we define a wrapper, logic.substitute, which can apply a sub-

stitution list to a term without an extra flag parameter. We also define logic.sub-

stitute-list, which can apply a substitution list to a term list without a flag

parameter.

Definition 71: logic.substitute
(pequal* (logic.substitute x sigma)

(logic.flag-substitute ’term x sigma))

Definition 72: logic.substitute-list
(pequal* (logic.substitute-list x sigma)

(logic.flag-substitute ’list x sigma))

The function logic.substitute-formula extends our substitution operation

to formulas.

Definition 73: logic.substitute-formula
(pequal*
(logic.substitute-formula formula sigma)
(let ((type (logic.fmtype formula)))

(cond ((equal type ’por*)
(logic.por
(logic.substitute-formula (logic.vlhs formula) sigma)
(logic.substitute-formula (logic.vrhs formula) sigma)))

((equal type ’pnot*)
(logic.pnot
(logic.substitute-formula (logic.∼arg formula) sigma)))

((equal type ’pequal*)
(logic.pequal
(logic.substitute (logic.=lhs formula) sigma)
(logic.substitute (logic.=rhs formula) sigma)))

(t nil))))

89

Recall from page 27 the instantiation rule, which allows us to derive A/σ from

a proof of A. An appeal is a valid use of the instantiation rule when (1) its method

is INSTANTIATION, (2) it has a single subproof, call its conclusion A, (3) its extras

are a substitution list, call it σ, and (4) its conclusion is A/σ. We also ensure that

the resulting formula is valid with respect to the arity table.

Definition 74: logic.instantiation-okp
(pequal* (logic.instantiation-okp x)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’instantiation)
(logic.sigmap extras)
(tuplep 1 subproofs)
(equal (logic.substitute-formula

(logic.conclusion (first subproofs))
extras)

conclusion)
(logic.formula-atblp conclusion atbl))))

Recall from page 27 the β-reduction rule, which allows us to derive, from no

premises,

(pequal* ((lambda (x1 . . . xn) β) t1 . . . tn)
β/[x1 ← t1, . . . , xn ← tn]).

We say an appeal is a valid use of the β-reduction rule when its method is BETA-

REDUCTION, its conclusion has the appropriate form, and it has no subproofs or

extras.

Definition 75: logic.beta-reduction-okp
(pequal* (logic.beta-reduction-okp x atbl)

(let ((method (logic.method x))

90

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’beta-reduction)
(equal subproofs nil)
(equal extras nil)
(logic.formula-atblp conclusion atbl)
(equal (logic.fmtype conclusion) ’pequal*)
(let ((lhs (logic.=lhs conclusion))

(rhs (logic.=rhs conclusion)))
(and (logic.lambdap lhs)

(let ((formals (logic.lambda-formals lhs))
(body (logic.lambda-body lhs))
(actuals (logic.lambda-actuals lhs)))

(equal (logic.substitute
body
(pair-lists formals actuals))

rhs)))))))

We introduce the arity table for our primitive functions with a zero-ary func-

tion, logic.initial-arity-table.

Definition 76: logic.initial-arity-table
(pequal* (logic.initial-arity-table)

’((if . 3)
(equal . 2)
(consp . 1)
(cons . 2)
(car . 1)
(cdr . 1)
(symbolp . 1)
(symbol-< . 2)
(natp . 1)
(< . 2)
(+ . 2)
(- . 2)))

91

Recall from page 41 the base evaluation rule, which allows us to evaluate the

application of a primitive function on constants. To determine if a term has this form,

we use the function logic.base-evaluablep.

Definition 77: logic.base-evaluablep
(pequal*
(logic.base-evaluablep x)
(and (logic.functionp x)

(let ((fn (logic.function-name x))
(args (logic.function-args x)))

(let ((entry (lookup fn (logic.initial-arity-table))))
(and entry

(logic.constant-listp args)
(tuplep (cdr entry) args))))))

Given a base-evaluable term, the function logic.base-evaluator produces

the constant which it evaluates to.

Definition 78: logic.base-evaluator
(pequal* (logic.base-evaluator x)

(let ((fn (logic.function-name x))
(vals (logic.unquote-list (logic.function-args x))))

(list ’quote
(cond ((equal fn ’if)

(if (first vals)
(second vals)

(third vals)))
((equal fn ’equal)
(equal (first vals) (second vals)))

((equal fn ’consp)
(consp (first vals)))

((equal fn ’cons)
(cons (first vals) (second vals)))

((equal fn ’car)
(car (first vals)))

92

((equal fn ’cdr)
(cdr (first vals)))

((equal fn ’symbolp)
(symbolp (first vals)))

((equal fn ’symbol-<)
(symbol-< (first vals) (second vals)))

((equal fn ’natp)
(natp (first vals)))

((equal fn ’<)
(< (first vals) (second vals)))

((equal fn ’+)
(+ (first vals) (second vals)))

((equal fn ’-)
(- (first vals) (second vals)))))))

Finally, logic.base-eval-okp determines if an appeal is a valid use of the

base evaluation rule: the method must be BASE-EVAL, the conclusion must have the

form (pequal* lhs rhs) where lhs is a base-evaluable term which evaluates to rhs,

and there must be no subproofs or extras. We also ensure that the lhs is well-formed

with respect to the current arity table; there is no need to check the rhs since it is a

constant.

Definition 79: logic.base-eval-okp
(pequal* (logic.base-eval-okp x atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’base-eval)
(equal subproofs nil)
(equal extras nil)
(equal (logic.fmtype conclusion) ’pequal*)
(let ((lhs (logic.=lhs conclusion))

(rhs (logic.=rhs conclusion)))

93

(and (logic.base-evaluablep lhs)
(equal (logic.base-evaluator lhs) rhs)
(logic.term-atblp lhs atbl))))))

We now review the induction rule from page 56. Suppose m is a term,

q1, . . . , qk are formulas, and for each i = 1 . . . k we have a set of substitution lists,

Σi = {σ〈i,1〉, . . . , σ〈i,hi〉}. Then, we may derive the formula F given proofs of the

basis step,
(por* F (por* q1 (. . . (por* qk−1 qk) . . .)),

inductive steps, for i = 1 . . . k,
(por* F

(por* (pnot* qi)
(por* (pnot* F/σ〈i,1〉)

. . .
(por* (pnot* F/σ〈i,hi−1〉)

(pnot* F/σ〈i,hi〉)) . . .))),
ordinal step,
(pequal* (ordp m) t), and

measure steps, for i = 1 . . . k, j = 1 . . . hi,
(por* (pnot* qi) (pequal* (ord< m/σ〈i,j〉 m) t)).

To check whether an appeal is a valid use of the induction rule, we will

need to ensure that its subproofs establish each of these obligations. The function

logic.make-basis-step creates the formula required for the basis step, given the

formula F and the list of formulas (q1 . . . qk).

Definition 80: logic.make-basis-step
(pequal* (logic.make-basis-step f qs)

(logic.disjoin-formulas (cons f qs)))

For the induction steps, we begin with an auxiliary function. Given a formula,

F , and a list of substitutions, (σ1 . . . σn), logic.substitute-each-sigma-into-

formula produces the list of formulas (F/σ1 . . . F/σn).

94

Definition 81: logic.substitute-each-sigma-into-formula
(pequal*
(logic.substitute-each-sigma-into-formula f x)
(if (consp x)

(cons (logic.substitute-formula f (car x))
(logic.substitute-each-sigma-into-formula f (cdr x)))

nil))

We use this in logic.make-induction-step, which creates the induction step

for a particular i when given the formula F , the formula qi, and the corresponding

list of substitution lists, (σ〈i,1〉 . . . σ〈i,hi〉).

Definition 82: logic.make-induction-step
(pequal* (logic.make-induction-step f q-i sigmas-i)

(logic.disjoin-formulas
(cons f (cons (logic.pnot q-i)

(logic.substitute-each-sigma-into-formula
(logic.pnot f)
sigmas-i)))))

Finally, logic.make-induction-steps forms the list of all required induction

steps when given the list of formulas (q1 . . . qk) and the list of lists of substitution

lists, (Σ1 . . . Σk), where each Σi is the list (σ〈i,1〉 . . . σ〈i,hi〉).

Definition 83: logic.make-induction-steps
(pequal* (logic.make-induction-steps f qs all-sigmas)

(if (consp qs)
(cons (logic.make-induction-step f

(car qs)
(car all-sigmas))

(logic.make-induction-steps f
(cdr qs)
(cdr all-sigmas)))

nil))

95

The ordinal step is simpler to construct; given the term m, the function

logic.make-ordinal-step produces it.

Definition 84: logic.make-ordinal-step
(pequal* (logic.make-ordinal-step m)

(logic.pequal (logic.function ’ordp (list m)) ’’t))

For the measure steps, we begin with logic.make-measure-step, which con-

structs the measure step for a particular i and j, given the term m, the formula qi,

and the substitution list σ〈i,j〉.

Definition 85: logic.make-measure-step
(pequal* (logic.make-measure-step m q-i sigma-i-j)

(logic.por
(logic.pnot q-i)
(logic.pequal
(logic.function ’ord<

(list (logic.substitute m sigma-i-j) m))
’’t)))

The function logic.make-measure-steps extends this to construct all of the

measure steps for a particular i, given the term m, the formula qi, and the list of

substitution lists (σ〈i,1〉 . . . σ〈i,hi〉).

Definition 86: logic.make-measure-steps
(pequal* (logic.make-measure-steps m q-i sigmas-i)

(if (consp sigmas-i)
(cons (logic.make-measure-step m q-i (car sigmas-i))

(logic.make-measure-steps m q-i (cdr sigmas-i)))
nil))

96

Finally, logic.make-all-measure-steps constructs all the measure steps for

all i and j, given the term m, the list of formulas (q1 . . . qk), and the list of lists of

substitution lists, (Σ1 . . . Σk), where each Σi is the list (σ〈i,1〉 . . . σ〈i,hi〉).

Definition 87: logic.make-all-measure-steps
(pequal* (logic.make-all-measure-steps m qs all-sigmas)

(if (consp all-sigmas)
(app (logic.make-measure-steps m

(car qs)
(car all-sigmas))

(logic.make-all-measure-steps m
(cdr qs)
(cdr all-sigmas)))

nil))

We are now ready to introduce logic.induction-okp, which checks whether

an appeal is a valid use of the induction rule. The method must be INDUCTION, and

the extras are expected to be a three-tuple containing the term m, the list of formulas

qs = (q1 . . . qk), and the list of lists of substitution lists, all-sigmas = (Σ1 . . . Σk),

where each Σi is the list (σ〈i,1〉 . . . σ〈i,hi〉). Then, taking the conclusion as the formula

F , the subproofs must include the basis step, induction steps, ordinal step, and

measure steps. There is no need to check the arity of the conclusion since it occurs

in the conclusions of the basis and inductive steps.

Definition 88: logic.induction-okp
(pequal*
(logic.induction-okp x)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’induction)
(tuplep 3 extras)

97

(let ((m (first extras))
(qs (second extras))
(all-sigmas (third extras))
(subconcs (logic.strip-conclusions subproofs)))

(and (logic.termp m)
(logic.formula-listp qs)
(logic.sigma-list-listp all-sigmas)
(equal (len qs) (len all-sigmas))
(memberp (logic.make-basis-step conclusion qs)

subconcs)
(subsetp (logic.make-induction-steps conclusion

qs
all-sigmas)

subconcs)
(memberp (logic.make-ordinal-step m) subconcs)
(subsetp (logic.make-all-measure-steps m

qs
all-sigmas)

subconcs))))))

3.6 Proof Checking

Now that we have functions for checking each kind of proof step, we can create

a function to check “any step.” That is, logic.appeal-step-okp checks whether its

argument, x, is a valid step, with respect to a list of axioms and a list of theorems.

Definition 89: logic.appeal-step-okp
(pequal* (logic.appeal-step-okp x axioms thms atbl)

(let ((how (logic.method x)))
(cond ((equal how ’axiom)

(logic.axiom-okp x axioms atbl))
((equal how ’theorem)
(logic.theorem-okp x thms atbl))
((equal how ’propositional-schema)
(logic.propositional-schema-okp x atbl))

98

((equal how ’functional-equality)
(logic.functional-equality-okp x atbl))
((equal how ’beta-reduction)
(logic.beta-reduction-okp x atbl))
((equal how ’expansion)
(logic.expansion-okp x atbl))
((equal how ’contraction)
(logic.contraction-okp x))
((equal how ’associativity)
(logic.associativity-okp x))
((equal how ’cut)
(logic.cut-okp x))
((equal how ’instantiation)
(logic.instantiation-okp x atbl))
((equal how ’induction)
(logic.induction-okp x))
((equal how ’base-eval)
(logic.base-eval-okp x atbl))
(t nil))))

Our proof checker, logic.proofp, is formed by extending this single-step

checking function across the proof, recursively. Since we need to check both proofs

and lists of proofs, we use a flag function and, as usual, introduce a wrapper to hide

the flag.

Definition 90: logic.flag-proofp
(pequal*
(logic.flag-proofp flag x axioms thms atbl)
(if (equal flag ’proof)

(and (logic.appeal-step-okp x axioms thms atbl)
(logic.flag-proofp ’list (logic.subproofs x)

axioms thms atbl))
(if (consp x)

(and (logic.flag-proofp ’proof (car x) axioms thms atbl)
(logic.flag-proofp ’list (cdr x) axioms thms atbl))

99

t)))

Definition 91: logic.proofp
(pequal* (logic.proofp x axioms thms atbl)

(logic.flag-proofp ’proof x axioms thms atbl))

Recall that every step checking function ensures that if the conclusions of its

subproofs are well-formed with respect to an arity table, then its conclusion is also

well-formed. Hence, by induction, when logic.proofp accepts a proof, all of the

formulas in every conclusion throughout the proof must be well-formed with respect

to the arity table.

3.7 Provability

Now that we have a proof checker, we can use existential quantification to

decide whether a particular formula is provable. Recall from page 61 the notion

of a witnessing (Skolem) function. We begin by introducing a witnessing function,

logic.provable-witness, whose defining axiom is as follows.

Definition 92: logic.provable-witness
(por* (pequal* (and (logic.appealp proof)

(logic.proofp proof axioms thms atbl)
(equal (logic.conclusion proof) x))

nil)
(pnot*
(pequal* ((lambda (proof x axioms thms atbl)

(and (logic.appealp proof)
(logic.proofp proof axioms thms atbl)
(equal (logic.conclusion proof) x)))

(logic.provable-witness x axioms thms atbl)
x axioms thms atbl)

nil)))

100

Intuitively, this axiom can be understood as: if there exists an appeal which is

a valid proof of x, then (logic.provable-witness x axioms thms atbl) is such

an appeal. Accordingly, it is straightforward to introduce a function that determines

if a formula is provable.

Definition 93: logic.provablep
(pequal* (logic.provablep x axioms thms atbl)

(let ((proof (provable-witness x axioms thms atbl)))
(and (logic.appealp proof)

(logic.proofp proof axiom thms atbl)
(equal (logic.conclusion proof) x))))

101

Chapter 4

System Implementation

In this chapter, we introduce a Common Lisp program that allows us to run

logic.proofp to check proofs. This is the program that will be used to check the

proofs of Milawa’s fidelity (Section 12.12), and hence it must be trusted if we are to

have confidence in Milawa. Because of this, we have kept the program intentionally

primitive by the standards of interactive theorem provers: it has no automation for

finding proofs, no ability to recover from errors, and no ability to interact with other

tools and programs. In practice, the user constructs all of his proofs ahead of time,

then submits them to the program to be checked.

We begin by introducing a Common Lisp representation of the Milawa objects,

and a way to implement functions in the Milawa logic as Common Lisp functions.

We use this mechanism to introduce the Common Lisp counterpart of logic.proofp.

Our program allows the user to manage an evolving history of events. It keeps track

of the current axioms, theorems, and arity table, and allows the user to submit com-

mands to extend the history with admissible events. To check that these events are

admissible, our program initially requires the user to provide proofs of theorems and

admission obligations, and initially these proofs must be checked by logic.proofp.

To support our bootstrapping process (Chapter 12), the user can also instruct

the system to begin using a new, higher-level proof checker to check proofs. But to

do this, he must first prove the fidelity of his new proof checker, and check this proof

with the currently trusted proof checker.

102

Our use of Lisp features is fairly minimal, but there are still some nuances such

as creating packages, configuring the Common Lisp reader, and using hash tables,

which are best left to Lisp manuals such as Seibel’s Practical Common Lisp [81] and

Steele’s Common LISP: The Language [86].

4.1 Milawa Functions as Programs

Common Lisp has a package system which allows the programmer to put sym-

bols into different namespaces. We use packages to keep logical definitions separated

from our system functions and also from the functions which are built-in to Common

Lisp systems. Our program begins in the predefined CL-USER package, which is a

starting place for a Lisp user’s code. We will use this package for various functions

and objects which are not intended to be accessible from the logic. We also instruct

the Lisp compiler to optimize for execution speed.

Lisp Code
(in-package "CL-USER")
(declaim (optimize (speed 3) (safety 0) (space 0)))

We now create a new package which will be used for all the functions in our

logic. This is done with the defpackage command, which takes (1) a name for the new

package being created, and (2) instructions about which symbols should be imported

from other packages. We name this package MILAWA, and the instruction (:use)

ensures that no symbols are imported into the new package as it is created—think of

it as “use nothing.”

Lisp Code
(defpackage "MILAWA" (:use))

103

Next, we use the import command to bring a few symbols from Common

Lisp into the MILAWA package. This causes the MILAWA-package symbols such as

MILAWA::quote to become aliases for the COMMON-LISP-package symbols of the same

name, e.g., COMMON-LISP::quote. It is particularly important that we import quote

so that constants are interpreted correctly. The other symbols have definitions which

are compatible with our object representation (which we will discuss momentarily),

so it is convenient to import them rather than redefine them.

Lisp Code
(import ’(COMMON-LISP::nil

COMMON-LISP::t
COMMON-LISP::quote
COMMON-LISP::if
COMMON-LISP::equal
COMMON-LISP::consp
COMMON-LISP::cons
COMMON-LISP::symbolp
COMMON-LISP::let
COMMON-LISP::let*
COMMON-LISP::list
COMMON-LISP::and
COMMON-LISP::or
COMMON-LISP::cond
COMMON-LISP::lambda)

"MILAWA")

Finally, the Lisp function find-package takes a package’s name and returns

a reference to that package. We define a constant, milawa-package, so we can refer

to this package many times without having to search for it.

Lisp Code
(defconstant milawa-package (find-package "MILAWA"))

104

Many Lisp implementations do not automatically compile functions when they

are submitted with defun. To ensure our system functions are compiled, we introduce

them with a new macro, defun-comp.

Lisp Code
(defmacro defun-comp (&rest args)

‘(compile (defun ,@args)))

How can we represent the objects of U? Common Lisp provides a data type for

representing arbitrary-precision integers, so we will use the non-negative Lisp integers

to represent N. The Common Lisp function integerp determines if its argument is

a Lisp integer, and its function <= performs a less-than-or-equal comparison, so we

can determine if x is such an object by writing (and (integerp x) (<= 0 x)).

Common Lisp also provides a symbol data type. Each Lisp symbol has a

name, which is an ASCII string, and a package which it belongs to. In our logic,

the symbols, S, also are named using ASCII strings, but are not organized into any

package system. The Common Lisp function symbolp determines if its argument is

a Lisp symbol, and symbol-name returns the name of a symbol as a string.

To represent S, we might try to use the subset of Lisp symbols whose package

is MILAWA. But because of our earlier import statement, symbols like MILAWA::quote

are actually aliases to symbols in the COMMON-LISP package. To correct for this, we

use a slightly different subset of Common Lisp symbols—namely, the symbols which

can be referred to by names in the MILAWA package. The Common Lisp function

intern takes a name and a package as arguments, and returns the symbol to which

package::name refers. For instance, if we intern "NATP" into milawa-package, we

obtain MILAWA::natp, but if we intern "QUOTE" into milawa-package we obtain

COMMON-LISP::quote because MILAWA::quote is just an alias to this symbol. So, to

105

determine if a particular symbol, x, is in our desired subset, we can write (equal x

(intern (symbol-name x) milawa-package))).

Common Lisp also provides a cons data type for representing ordered pairs.

The Lisp function cons constructs a pair when given the first and second components

as arguments, and consp determines if its argument is a pair.

We represent the conses of U using a subset of Lisp’s conses. Why do we not

simply use all Lisp conses? One reason is that there are “bad” Lisp objects such as

negative integers, characters, arrays, structures, and so on, which can be put into a

Lisp cons, yet which do not represent any object in U. Furthermore, Lisp conses can

contain circular references which would appear to be “infinite” objects, while every

object in U is finite. Accordingly, we represent the conses of U with Lisp cons trees

which are entirely free of bad objects and circular references.

We can recognize whether a Lisp object is free from bad objects and circular

references using acceptable-objectp. The algorithm is straightforward and makes

use of an EQ hash table, which can be thought of as a mapping from pointers to values.

This table describes the status of each cons: any cons that is unbound has not been

seen before, any cons bound to t has already been “fully explored” and is known to

be acceptable, and any cons bound to ’exploring is currently being explored. When

we encounter a new cons, we bind it to ’exploring as we explore its car and cdr;

after it has been fully explored, we rebind it to t. Accordingly, if we ever encounter

a cons which we are already ’exploring, we have found a circular reference.

Lisp Code
(defvar *acceptable-object-tbl*)
(declaim (type hash-table *acceptable-object-tbl*))

(defun-comp aux-acceptable-objectp (x)
(or (and (integerp x)

(<= 0 x))

106

(and (symbolp x)
(equal x (intern (symbol-name x) milawa-package)))

(and (consp x)
(let ((status (gethash x *acceptable-object-tbl*)))
(cond ((eq status t)

t)
((eq status nil)
(progn
(setf (gethash x *acceptable-object-tbl*)

’exploring)
(and (aux-acceptable-objectp (car x))

(aux-acceptable-objectp (cdr x))
(setf (gethash x *acceptable-object-tbl*)

t))))
(t
nil))))))

(defun-comp acceptable-objectp (x)
(let ((*acceptable-object-tbl* (make-hash-table :test ’eq)))

(aux-acceptable-objectp x)))

Throughout our system, we rely upon the acceptable-object invariant: only

acceptable objects shall be given as arguments to functions in the MILAWA package,

and all MILAWA-package functions shall produce acceptable objects for all such inputs.

Given this invariant, the Common Lisp functions if, equal, cons, consp,

and symbolp implement the semantics of if, equal, cons, consp, and symbolp,

respectively, so above we imported them directly into the MILAWA package. The other

primitives need to be defined, and for efficiency we suggest that the Lisp system inline

calls to each of these.

Lisp Code
(declaim (inline MILAWA::natp

MILAWA::symbol-<
MILAWA::<

107

MILAWA::+
MILAWA::-
MILAWA::car
MILAWA::cdr))

We can implement natp by defining the function MILAWA::natp as a simple

alias for integerp; this is sufficient since the only acceptable objects which satisfy

integerp are naturals.

Lisp Code
(defun-comp MILAWA::natp (x)

(integerp x))

We implement symbol-< with MILAWA::symbol-<. The Common Lisp func-

tion string< implements a lexicographic ordering on ASCII strings. When the rela-

tion is satisfied, it returns a number indicating where the strings differ, rather than

t which symbol-< is to return. We correct for this using the if expression.

Lisp Code
(defun-comp MILAWA::symbol-< (x y)

(let ((x-fix (if (symbolp x) x nil))
(y-fix (if (symbolp y) y nil)))

(if (string< (symbol-name x-fix) (symbol-name y-fix))
t

nil)))

The arithmetic operations are straightforward to implement. Common Lisp

provides <, +, and - operations for its unbounded integers. In the case of subtraction,

we must be careful to return 0 when integer-subtraction produces a negative result.

Lisp Code
(defun-comp MILAWA::< (x y)

(let ((x-fix (if (integerp x) x 0))
(y-fix (if (integerp y) y 0)))

108

(< x-fix y-fix)))

(defun-comp MILAWA::+ (x y)
(let ((x-fix (if (integerp x) x 0))

(y-fix (if (integerp y) y 0)))
(+ x-fix y-fix)))

(defun-comp MILAWA::- (x y)
(let* ((x-fix (if (integerp x) x 0))

(y-fix (if (integerp y) y 0))
(ans (- x-fix y-fix)))

(if (< ans 0) 0 ans)))

Finally, there are the primitive operations on conses, car and cdr. It is an

error to call the Common Lisp functions car and cdr on non-consp arguments other

than nil, so we are careful to handle this case separately.

Lisp Code
(defun-comp MILAWA::car (x)

(if (consp x) (car x) nil))

(defun-comp MILAWA::cdr (x)
(if (consp x) (cdr x) nil))

Lisp’s abbreviations, let, let*, list, and, or, cond, and lambda, are also

compatible with our definitions, so they were directly imported. The only remaining

abbreviations are first, second, third, fourth, and fifth, and these are easy to

define using the Lisp macro system.

Lisp Code
(defmacro MILAWA::first (x) ‘(MILAWA::car ,x))
(defmacro MILAWA::second (x) ‘(MILAWA::first (MILAWA::cdr ,x)))
(defmacro MILAWA::third (x) ‘(MILAWA::second (MILAWA::cdr ,x)))
(defmacro MILAWA::fourth (x) ‘(MILAWA::third (MILAWA::cdr ,x)))
(defmacro MILAWA::fifth (x) ‘(MILAWA::fourth (MILAWA::cdr ,x)))

109

With that, the definitions of not, rank, ord<, ordp, and the definitions from

Chapter 3 leading up to logic.proofp may be submitted as Lisp functions in the

MILAWA package.

But first, an aside.

We will eventually explain how our system implements recursive and witness-

ing function definition events. When such events are processed, new Common Lisp

functions will be defined in the MILAWA package. Since Common Lisp allows its func-

tions to be redefined at run-time, we want to ensure our proof checker’s functions

are not overridden by user-submitted events. Toward this purpose, we introduce

defun-safe and definline-safe. These commands act like defun, but also pre-

vent functions from being redefined. To do this, a new global variable, *defined-

functions-table*, is used to store tuples of the form

(name formals body inlinep).

Whenever defun-safe is used to define a function, the table is updated with the

function’s information. And before defun-safe will accept a definition, it first con-

sults the table to ensure that if the function has been defined before, then the newly

proposed definition is identical to the previous definition.

Lisp Code
(defvar *defined-functions-table* nil)

(defun-comp defun-safe-fn (name formals body inlinep)
(let ((this-defun (list name formals body inlinep))

(prev-defun (assoc name *defined-functions-table*)))
(if prev-defun

(unless (equal this-defun prev-defun)
(error "Attempted redefinition of ∼A.∼%

Prev: ∼A.∼%

110

New: ∼A∼%"
name prev-defun this-defun))

(progn
(push this-defun *defined-functions-table*)

(when inlinep
(eval ‘(declaim (inline ,name))))

(eval ‘(compile (defun ,name ,formals
(declare (ignorable ,@formals))
,body)))

))))

(defmacro defun-safe (name formals body)
‘(defun-safe-fn ’,name ’,formals ’,body nil))

(defmacro definline-safe (name formals body)
‘(defun-safe-fn ’,name ’,formals ’,body t))

We use defun-safe and definline-safe to submit the definitions leading up

to logic.proofp. For efficiency, we suggest the Common Lisp system inline simple

non-recursive functions such as accessors and constructors. In the end, we have a

Common Lisp function, MILAWA::logic.proofp, which may be run on a computer

to check proofs.

Lisp Code
(in-package "MILAWA")

(CL-USER::definline-safe not (x)
(if x nil t))

(CL-USER::defun-safe rank (x)
(if (consp x)

(+ 1
(+ (rank (car x))

(rank (cdr x))))
0))

. . . and so on . . .

111

(CL-USER::definline-safe logic.proofp
(x axioms thms atbl)
(logic.flag-proofp ’proof x axioms thms atbl))

Unlike recursive function definitions, witnessing function definitions such as

logic.provable-witness do not explain how to compute their values for arbitrary,

concrete inputs. Nevertheless, we still define Common Lisp functions for witnessing

function definitions. Such functions simply cause an error that indicates a witnessing

function was called.

We show the definition of logic.provable-witness, below. Recall from page

2.9 that a witnessing function event involves a name, a bound variable, free variables,

and a body. We ensure that each of these components appears in our error message, so

that the defun-safemechanism will prohibit any redefinition of witnessing functions.

Lisp Code
(CL-USER::defun-safe logic.provable-witness (x axioms thms atbl)

(CL-USER::error "Called witnessing function ∼A.∼%"
’(logic.provable-witness
proof
(x axioms thms atbl)
(and (logic.appealp proof)

(logic.proofp proof axioms thms atbl)
(equal (logic.conclusion proof) x)))))

Finally, we define logic.provablep in the same way we introduced the other

proof-checker functions, so that all the definitions from Chapter 3 have been included.

Of course, attempts to run the Common Lisp function logic.provablep will simply

result in an error being caused by logic.provable-witness.

Lisp Code
(CL-USER::defun-safe logic.provablep (x axioms thms atbl)

(let ((proof (logic.provable-witness x axioms thms atbl)))

112

(and (logic.appealp proof)
(logic.proofp proof axioms thms atbl)
(equal (logic.conclusion proof) x))))

4.2 Supporting Abbreviations

Our system allows its user to submit events, including definitions of recursive

functions. For these definitions to be understandable, we would like the user to be able

to use all of the abbreviations mentioned in Section 2.5. Accordingly, we implemented

macros in the MILAWA package for first through fifth, and we imported list, and,

or, cond, let, and let* from Common Lisp. Together, this allows for the use of

abbreviations when we define Common Lisp functions with defun.

But to process a definition event, we will need to do more than define a new

Common Lisp function. In particular, we must ensure the termination obligations

are provable and add the definitional axiom. For these tasks, we will need to trans-

late away any abbreviations and produce the actual term which should be used for

the function’s body. We could implement our translator as a regular Common Lisp

function, but it is not difficult to define it as a function in our logic. Then, as with

the proof checker, we can use defun-safe to produce a MILAWA-package Common

Lisp function that can perform the translation.

We begin with handful of general-purpose utility functions. The function

remove-all eliminates all occurrences of some element from a list.

Translator Definition 1: remove-all
(pequal* (remove-all a x)

(if (consp x)
(if (equal a (car x))

(remove-all a (cdr x))
(cons (car x) (remove-all a (cdr x))))

113

nil))

The function remove-duplicates eliminates repeated occurrences of elements

from a list.

Translator Definition 2: remove-duplicates
(pequal* (remove-duplicates x)

(if (consp x)
(if (memberp (car x) (cdr x))

(remove-duplicates (cdr x))
(cons (car x) (remove-duplicates (cdr x))))

nil))

The function difference acts like a set-difference operation on lists, removing

all elements from x which are not in y.

Translator Definition 3: difference
(pequal* (difference x y)

(if (consp x)
(if (memberp (car x) y)

(difference (cdr x) y)
(cons (car x) (difference (cdr x) y)))

nil))

We can apply first to every element in a list using strip-firsts, and

similarly we can apply second with strip-seconds.

Translator Definition 4: strip-firsts
(pequal* (strip-firsts x)

(if (consp x)
(cons (first (car x))

(strip-firsts (cdr x)))
nil))

114

Translator Definition 5: strip-seconds
(pequal* (strip-seconds x)

(if (consp x)
(cons (second (car x))

(strip-seconds (cdr x)))
nil))

We can ask whether every element in a list is an n-tuple with tuple-listp.

Translator Definition 6: tuple-listp
(pequal* (tuple-listp n x)

(if (consp x)
(and (tuplep n (car x))

(tuple-listp n (cdr x)))
t))

Finally, we implement sort-symbols, a simple insertion sort for lists of sym-

bols, using the auxiliary function sort-symbols-insert, which performs a single

insert.

Translator Definition 7: sort-symbols-insert
(pequal* (sort-symbols-insert a x)

(if (consp x)
(if (symbol-< a (car x))

(cons a x)
(cons (car x) (sort-symbols-insert a (cdr x))))

(list a)))

Translator Definition 8: sort-symbols
(pequal* (sort-symbols x)

(if (consp x)
(sort-symbols-insert (car x) (sort-symbols (cdr x)))

nil))

115

Now we develop some routines to assist in the translation. Recall from page

42 the meaning of the abbreviation list,

Abbreviation Meaning
(list) nil
(list x1) (cons x1 nil)
(list x1 . . . xn) (cons x1 (list x2 . . . xn)).

Given args = (x1 . . . xn), where each xi is a term—or in other words, where each xi

has already been translated—the function logic.translate-list-term produces

the translation of (list x1 . . . xn).

Translator Definition 9: logic.translate-list-term
(pequal* (logic.translate-list-term args)

(if (consp args)
(logic.function
’cons
(list (car args)

(logic.translate-list-term (cdr args))))
’’nil))

Next, recall the meanings of the abbreviations and and or,

Abbreviation Meaning
(and) t
(and x1) x1
(and x1 . . . xn) (if x1 (and x2 . . . xn) nil)
(or) nil
(or x1) x1
(or x1 . . . xn) (if x1 x1 (or x2 . . . xn)).

Given args = (x1 . . . xn), where each xi is a term, we may produce the translations

of (and x1 . . . xn) and (or x1 . . . xn) using the functions logic.translate-

and-term and logic.translate-or-term, respectively.

Translator Definition 10: logic.translate-and-term
(pequal* (logic.translate-and-term args)

116

(if (consp args)
(if (consp (cdr args))

(logic.function
’if
(list (first args)

(logic.translate-and-term (cdr args))
’’nil))

(first args))
’’t))

Translator Definition 11: logic.translate-or-term
(pequal* (logic.translate-or-term args)

(if (consp args)
(if (consp (cdr args))

(logic.function
’if
(list (first args)

(first args)
(logic.translate-or-term (cdr args))))

(first args))
’’nil))

Next we address cond. Recall that (cond) abbreviates nil, while

(cond (cond1 result1) . . . (condn resultn))

abbreviates

(if cond1 result1 (cond (cond2 result2) . . . (condn resultn))).

Given tests = (test1 . . . testn) and thens = (then1 . . . thenn) as arguments, where

each testi and theni is a term, logic.translate-cond-term translates

(cond (test1 then1) . . . (testn thenn)).

117

Translator Definition 12: logic.translate-cond-term
(pequal* (logic.translate-cond-term tests thens)

(if (consp tests)
(let ((test1 (car tests))

(then1 (car thens)))
(logic.function
’if
(list test1

then1
(logic.translate-cond-term (cdr tests)

(cdr thens)))))
’’nil))

Recall that given unique variables, var1 , . . . , varn,

(let ((var1 term1) . . . (varn termn)) β)

is an abbreviation for

((lambda (x1 . . . xm var1 . . . varn) β) x1 . . . xm term1 . . . termn),

where x1, . . . , xm are the free variables of β besides var1, . . . , varn in lexicographic

order. Given vars = (var1 . . . varn), terms = (term1 . . . termn), and body,

where the vars are unique, the terms are terms, and body is a term, the function

logic.translate-let-term produces the translation of

(let ((var1 term1) . . . (varn termn)) body).

Translator Definition 13: logic.translate-let-term
(pequal*
(logic.translate-let-term vars terms body)
(let* ((body-vars (remove-duplicates (logic.term-vars body)))

(id-vars (sort-symbols (difference body-vars vars)))
(formals (app id-vars vars))
(actuals (app id-vars terms)))

118

(logic.lambda formals body actuals)))

Finally, recall from page 43 that (let* () β) abbreviates β, while

(let* ((var1 term1) . . . (varn termn)) β)

abbreviates

(let ((var1 term1))
(let* ((var2 term2) . . . (varn termn))
β)).

Given vars = (var1 . . . varn), terms = (term1 . . . termn), and body, where the

vars are unique, the terms are terms, and body is a term, the function logic.trans-

late-let*-term produces the translation of

(let* ((var1 term1) . . . (varn termn)) body).

Translator Definition 14: logic.translate-let*-term
(pequal* (logic.translate-let*-term vars terms body)

(if (consp vars)
(logic.translate-let-term
(list (car vars))
(list (car terms))
(logic.translate-let*-term (cdr vars)

(cdr terms)
body))

body))

We now combine these utilities to create our translator, logic.flag-trans-

late. This is a flag function which can be used to translate an object from U into

(1) a term, or (2) a list of terms, depending upon its mode of operation.

Translation may fail—for instance, the object we are translating may con-

tain malformed abbreviations like (cond 3), which does not have the proper struc-

ture, or (let ((x 1) (x 2)) (+ x x)), which attempts to bind the same variable

119

twice—and we handle failure differently depending upon which mode we are in. In

term mode, a successful translation produces a term (i.e., an object accepted by

logic.termp) and NIL is returned to indicate failure; this is unambiguous since NIL

is not a valid term. In list mode, logic.flag-translate always returns a cons

of the form (successp . value), where successp is T when the translation has been

successful or NIL otherwise, and where value is a list of abbreviation-free terms on

success or NIL on failure.

Since logic.flag-translate is rather long, we split up its definition into

short segments which we can comment upon. Recall from page 41 that a numeric

token, n, may be used as an abbreviation for ’n, t abbreviates ’t, and nil abbrevi-

ations ’nil. Our first few cases implement these abbreviations.

Translator Definition 15: logic.flag-translate
(pequal* (logic.flag-translate flag x)

(if (equal flag ’term)
(cond ((natp x)

(list ’quote x))
((symbolp x)
(if (or (equal x nil)

(equal x t))
(list ’quote x)

x))

Otherwise, we have a cons. Most of the interesting cases occur when the car

is a symbol, which might be an abbreviation, a function application, or QUOTE. We

begin by handling QUOTE. If x has the form (QUOTE v), then it is already a term

and we return it unchanged; otherwise this is an error.

((symbolp (car x))
(let ((fn (car x)))

(cond ((equal fn ’quote)
(if (tuplep 2 x)

120

x
nil))

Next, we handle the abbreviations first, second, third, fourth, and fifth.

Here, x must again be a 2-tuple for the abbreviation to be well-formed. We begin by

recursively translating the argument, and if that is successful, we wrap the resulting

term in the necessary car and cdr applications.

((memberp fn ’(first second third fourth fifth))
(and (tuplep 2 x)

(let ((arg (logic.flag-translate ’term (second x))))
(and arg

(let* ((1cdr (logic.function ’cdr (list arg)))
(2cdr (logic.function ’cdr (list 1cdr)))
(3cdr (logic.function ’cdr (list 2cdr)))
(4cdr (logic.function ’cdr (list 3cdr))))

(logic.function
’car
(list (cond ((equal fn ’first) arg)

((equal fn ’second) 1cdr)
((equal fn ’third) 2cdr)
((equal fn ’fourth) 3cdr)
(t 4cdr)))))))))

For the abbreviations and, or, and list, we recursively translate the argu-

ments. If these translations are successful, we use our utility functions to build the

appropriate term.

((memberp fn ’(and or list))
(and (true-listp (cdr x))

(let ((arguments+ (logic.flag-translate ’list (cdr x))))
(and (car arguments+)

(cond
((equal fn ’and)
(logic.translate-and-term (cdr arguments+)))

121

((equal fn ’or)
(logic.translate-or-term (cdr arguments+)))

(t
(logic.translate-list-term (cdr arguments+))))))))

For the abbreviation cond, we first ensure that we are given a true-list of 2-

tuples as arguments. We then extract the tests and thens and attempt to translate

them recursively. If this is all successful, we combine everything into a term using

our utility function, logic.translate-cond-term.

((equal fn ’cond)
(and (true-listp (cdr x))

(tuple-listp 2 (cdr x))
(let* ((tests (strip-firsts (cdr x)))

(thens (strip-seconds (cdr x)))
(tests+ (logic.flag-translate ’list tests))
(thens+ (logic.flag-translate ’list thens)))

(and (car tests+)
(car thens+)
(logic.translate-cond-term (cdr tests+)

(cdr thens+))))))

For let and let*, we first ensure that we are given a 3-tuple whose second

component is a true list of 2-tuples. We extract the variables and ensure they are

variables and, in the case of let, ensure they are unique. We extract the terms being

bound to these variables and recursively translate them, and recursively translate the

body. If all of this is successful, we use our utility functions to build the appropriate

lambda term.
((memberp fn ’(let let*))
(and (tuplep 3 x)

(let ((pairs (second x))
(body (logic.flag-translate ’term (third x))))

(and body

122

(true-listp pairs)
(tuple-listp 2 pairs)
(let* ((vars (strip-firsts pairs))

(terms (strip-seconds pairs))
(terms+ (logic.flag-translate ’list terms)))

(and (car terms+)
(logic.variable-listp vars)
(cond
((equal fn ’let)
(and (uniquep vars)

(logic.translate-let-term vars
(cdr terms+)
body)))

(t
(logic.translate-let*-term vars

(cdr terms+)
body)))))))))

At this point we have handled all of the abbreviations. For function applica-

tions, we first ensure the arguments are a true list, then try to recursively translate

them and apply the function to the resulting terms.

((logic.function-namep fn)
(and (true-listp (cdr x))

(let ((arguments+ (logic.flag-translate ’list (cdr x))))
(and (car arguments+)

(logic.function fn (cdr arguments+))))))

Otherwise, we are still in the case where the car is a symbol, but it is not

QUOTE, an abbreviation, or a function name, so the translation fails.

(t
nil))))

To translate a lambda abbreviation, we first ensure it has the appropriate

structure. The car must be a 3-tuple whose first component is the symbol LAMBDA,

123

and the actuals must be a true list. We attempt to recursively translate the body and

the actuals, and ensure that a valid lambda can be produced: the formals must be a

true list of unique variables; there must be the same number of formals and actuals;

and the formals must mention all of the body’s free variables. If all these conditions

are met, we build a new lambda abbreviation, using the translated body and actuals.

((and (tuplep 3 (car x))
(true-listp (cdr x)))

(let* ((lambda-symbol (first (car x)))
(vars (second (car x)))
(body (third (car x)))
(new-body (logic.flag-translate ’term body))
(actuals+ (logic.flag-translate ’list (cdr x))))

(and (equal lambda-symbol ’lambda)
(true-listp vars)
(logic.variable-listp vars)
(uniquep vars)
new-body
(subsetp (logic.term-vars new-body) vars)
(car actuals+)
(equal (len vars) (len (cdr actuals+)))
(logic.lambda vars new-body (cdr actuals+)))))

There are no other valid objects which can be translated into terms, so if none

of the above cases have matched, we end the term mode with failure.

(t
nil))

Finally, implementing the list mode is entirely straightforward. We simply try

to translate each element in the list, and propagate any failures.

(if (consp x)
(let ((first (logic.flag-translate ’term (car x)))

(rest (logic.flag-translate ’list (cdr x))))
(if (and first (car rest))

124

(cons t (cons first (cdr rest)))
(cons nil nil)))

(cons t nil))))

As usual, we also implement a flag-free wrapper function, logic.translate,

which attempts to translate its argument into a term. It returns a term on success,

or NIL on failure.

Translator Definition 16: logic.translate
(pequal* (logic.translate x)

(logic.flag-translate ’term x))

4.3 The History

Our system allows its user to extend a history with admissible events. We

introduce the global variables *arity-table*, *axioms*, and *theorems* to store

the arity table, the list of axioms, and the list of theorems associated with the current

history, respectively.

Lisp Code
(CL-USER::in-package "CL-USER")
(defvar *arity-table* nil)
(defvar *axioms* nil)
(defvar *theorems* nil)

When our program is started, its user begins in the empty history. Recall

from page 58 that the arity table for the empty history consists of the entries in

(logic.initial-arity-table), as well as entries for not, rank, ordp, and ord<,

so we initialize *arity-table* with these entries.

Lisp Code
(in-package "MILAWA")

125

(CL-USER::setf CL-USER::*arity-table*
(app ’((rank . 1)

(ordp . 1)
(ord< . 2))

(logic.initial-arity-table)))

The axioms of the empty history are the fifty-six numbered axioms mentioned

in Chapter 2, so we initialize *axioms* with these formulas. Except for the definitions

of not, rank, ord< and ordp, these formulas are abbreviation-free, so we can put

them in directly. Then, we use logic.translate to add the definitions which use

abbreviations.

Lisp Code
(CL-USER::setf CL-USER::*axioms*

(app ’(;; reflexivity
(pequal* x x)

. . . and so on . . .

;; closed-universe
(por* (pequal* (natp x) ’t)

(por* (pequal* (symbolp x) ’t)
(pequal* (consp x) ’t)))

)

(list
;; definition-of-not
(logic.pequal ’(not x) (logic.translate ’(if x nil t)))

. . . and so on . . .

;; definition-of-ordp
(logic.pequal ’(ordp x) (logic.translate . . .)))))

Finally, the empty history has no theorems, so we leave *theorems* with its

initial value, nil.

126

How can we say our program begins in the empty history when we have already

defined several functions—the proof checker, translator, and termination obligation

routines—in the MILAWA package that are not in the empty history? Since we have

not added the names of these functions to *arity-table* and have not added their

definitions to *axioms*, they are effectively “invisible,” and initially cannot be rea-

soned about. Later, as the user works, he may try to define these functions. Our use

of defun-safe ensures that he can only use precisely the definition we have given

above, and even then he will still have to prove the definition is admissible. As part

of our bootstrapping process (Chapter 12), we admit all of these functions.

4.4 Termination Obligations

Recall from page 59 that for a recursive function definition to be admissible,

its termination obligations must be provable. It is straightforward to construct the

ordinal obligation, but to determine what the progress obligations are, we will need

to construct a call map and then process it. As with the proof checker and term

translator, we implement our functions in the logic, then use defun-safe to produce

a MILAWA-package Common Lisp function.

We will represent call maps as association lists where each key contains the

actuals of a recursive call, and where each value is a list of the rulers of this recursive

call. In other words, each key is a list of terms, and each value is also a list of terms.

The algorithm for computing the call map for a function is given on page 60,

and we will review it in a moment. But first, we develop a couple of utility routines.

To handle if expressions, we need a way to extend a call map by adding a new ruler to

each of its entries. We implement this operation as the function cons-onto-ranges,

which builds a new association list from x by consing a onto each of the values of x.

127

Termination Definition 1: cons-onto-ranges
(pequal* (cons-onto-ranges a x)

(if (consp x)
(cons (cons (car (car x))

(cons a (cdr (car x))))
(cons-onto-ranges a (cdr x)))

nil))

Similarly, to build the call map for a lambda abbreviation, we must be able

to apply a substitution to all calls and rulers in a call map. We implement this using

the function logic.substitute-callmap.

Termination Definition 2: logic.substitute-callmap
(pequal* (logic.substitute-callmap x sigma)

(if (consp x)
(let ((actuals (car (car x)))

(rulers (cdr (car x))))
(cons (cons (logic.substitute-list actuals sigma)

(logic.substitute-list rulers sigma))
(logic.substitute-callmap (cdr x) sigma)))

nil))

We now review the callmap algorithm and provide an implementation. Given

a function name, f , the function logic.flag-callmap constructs either (1) its call

map for a term, or (2) the union of its call maps for each term in a list, based upon

the mode of operation specified by its flag parameter. When x is a constant or a

variable, there are no recursive calls of f within x, so callmap(f, x) is empty.

Termination Definition 3: logic.flag-callmap
(pequal*
(logic.flag-callmap flag f x)
(if (equal flag ’term)

(cond ((logic.constantp x) nil)
((logic.variablep x) nil)

128

When x is (if a b c), callmap(f, x) includes the calls from a, verbatim;

the calls from b, but modified so that a is also a ruler of each call; and the calls of c,

modified so (not a) is also a ruler of each call.
((logic.functionp x)
(let ((name (logic.function-name x))

(args (logic.function-args x)))
(cond ((and (equal name ’if)

(equal (len args) 3))
(let ((test-calls

(logic.flag-callmap ’term f (first args)))
(true-calls
(cons-onto-ranges
(first args)
(logic.flag-callmap ’term f (second args))))

(else-calls
(cons-onto-ranges
(logic.function ’not (list (first args)))
(logic.flag-callmap ’term f (third args)))))

(app test-calls (app true-calls else-calls))))

Still in the function case, when x is (f t1 . . . tn), callmap(f, x) associates

(f t1 . . . tn) with no rulers, and also includes the calls from callmap(f, ti).

((equal name f)
(let ((this-call (cons args nil))

(child-calls (logic.flag-callmap ’list f args)))
(cons this-call child-calls)))

Still in the function case, when x is any other function call, (g t1 . . . tm),

callmap(f, x) is the union of callmap(f, ti).

(t
(logic.flag-callmap ’list f args)))))

129

Otherwise, and finishing the term mode, when x is a lambda abbreviation,

((lambda (x1 . . . xn) β) t1 . . . tn), its call map includes all calls in the actu-

als, i.e., callmap(f, ti), and also includes the modified call map of β, formed by

substituting σ = [x1 ← t1, . . . , xn ← tn] into each call and all rulers.

((logic.lambdap x)
(let ((formals (logic.lambda-formals x))

(body (logic.lambda-body x))
(actuals (logic.lambda-actuals x)))

(let ((actuals-calls (logic.flag-callmap ’list f actuals))
(body-calls (logic.flag-callmap ’term f body))
(sigma (pair-lists formals actuals)))

(app actuals-calls
(logic.substitute-callmap body-calls sigma))))))

Finally, in the list mode, we simply combine the call maps of each term in the

list.
(if (consp x)

(app (logic.flag-callmap ’term f (car x))
(logic.flag-callmap ’list f (cdr x)))

nil)))

As usual, we introduce a flag-free wrapper, logic.callmap, to compute the

call map for a term.

Termination Definition 4: logic.callmap
(pequal* (logic.callmap f x)

(logic.flag-callmap ’term f x))

Once we have the call map, it is straightforward to produce the progress obli-

gations. Recall that for each recursive call, (f a1 . . . an), associated with the rulers

r1, . . . , rm, we have the obligation

130

(por* (pequal* (ord< m/σ m) t)
(por* (pequal* r1 nil)

...
(por* (pequal* rm−1 nil)

(pequal* rm nil))) . . .)),

where σ = [x1 ← a1, . . . , xn ← an]. To construct these obligations, a couple of utility

functions are useful. The function repeat creates a list containing n copies of the

element a.

Termination Definition 5: repeat
(pequal* (repeat a n)

(if (zp n)
nil

(cons a (repeat a (- n 1)))))

Given two equal-length lists of terms, (x1 . . . xn) and (y1 . . . yn), the func-

tion logic.pequal-list creates a the list of formulas,

((pequal* x1 y1) . . . (pequal* xn yn)).

Termination Definition 6: logic.pequal-list
(pequal* (logic.pequal-list x y)

(if (and (consp x)
(consp y))

(cons (logic.pequal (car x) (car y))
(logic.pequal-list (cdr x) (cdr y)))

nil))

The function logic.progress-obligation constructs the formula for a single

progress obligation. As inputs, it takes the measure and formals from the proposed

definition, along with the actuals and rulers from the entry in the call map.

Termination Definition 7: logic.progress-obligation
(pequal* (logic.progress-obligation measure formals actuals rulers)

131

(let* ((sigma (pair-lists formals actuals))
(m/sigma (logic.substitute measure sigma))
(ord-term (logic.function ’ord<

(list m/sigma measure))))
(logic.disjoin-formulas
(cons (logic.pequal ord-term ’’t)

(logic.pequal-list
rulers
(repeat ’’nil (len rulers)))))))

We extend this with logic.progress-obligations, which constructs the

progress obligations for an entire call map.

Termination Definition 8: logic.progress-obligations
(pequal* (logic.progress-obligations measure formals callmap)

(if (consp callmap)
(let* ((entry (car callmap))

(actuals (car entry))
(rulers (cdr entry)))

(cons (logic.progress-obligation measure formals
actuals rulers)

(logic.progress-obligations measure formals
(cdr callmap))))

nil))

Finally, logic.termination-obligations produces the list of all admission

obligations—the ordinal obligation and the progress obligations—for a proposed func-

tion definition given the name, formals, body, and measure.

Termination Definition 9: logic.termination-obligations
(pequal* (logic.termination-obligations name formals body measure)

(let ((callmap (logic.callmap name body)))
(if callmap

(cons (logic.pequal
(logic.function ’ordp (list measure))

132

’’t)
(logic.progress-obligations measure formals

callmap))
nil)))

4.5 Establishing Provability

To admit a theorem event, we must first ensure its formula is provable with

respect to the current axioms and theorems of our history. Likewise, to admit a recur-

sive function definition, we must first ensure its termination obligations are provable.

In the logic, we express the provability of a formula with logic.provablep.

But this function cannot be used by our system to determine whether an arbitrary

formula is provable; it is defined in terms of the witnessing function logic.provable-

witness, so calling it would only cause an error.

When we need to know a formula is provable, our approach is to require the

user to provide a proof. Initially, the user will be required to provide a logic.proofp-

checkable proof of the desired formula. He may use any tools at all, including un-

trusted or extralogical ones, to create these proofs. The real problem is not that it

is inconvenient to write tools to construct proofs, but that unless we can somehow

increase the level of abstraction, interesting proofs become so large that it is imprac-

tical to construct, store, and check them. To increase our level of abstraction, our

system allows for the development of more powerful proof-checking functions. Once

a new proof checker has been verified, we can begin using it to check proofs.

All proof-checkers accepted by our system take the same arguments as lo-

gic.proofp—x, an appeal to be checked; axioms, the formulas considered to be

axioms; thms, the formulas considered to be theorems; and atbl, the arity-table being

used. At any point in time, exactly one proof-checker is considered to be active,

133

and its name is held in the global variable *proof-checker*, which is initially set to

logic.proofp. The function check-proof calls upon the current *proof-checker*

to check a particular proof, while check-proof-list uses it to check a list of proofs.

Lisp Code
(CL-USER::in-package "CL-USER")

(defvar *proof-checker* ’MILAWA::logic.proofp)

(defun-comp check-proof (x axioms thms atbl)
(funcall *proof-checker* x axioms thms atbl))

(defun-comp check-proof-list (x axioms thms atbl)
(if (consp x)

(and (check-proof (car x) axioms thms atbl)
(check-proof-list (cdr x) axioms thms atbl))

t))

The connection between logic.proofp and the proofs of our logic has been

discussed in depth in Chapter 3, so we consider it to be a valid proof checker. But what

about other functions? How can we trust that they accept only provable formulas?

We say that the fidelity claim for a function name, f , is the formula

(por* (pequal* (logic.appealp x) nil)
(por* (pequal* (f x axioms thms atbl) nil)

(pnot* (pequal* (logic.provablep (logic.conclusion x)
axioms thms atbl)

nil)))).

Given a particular function name, we may construct the fidelity claim with

logic.fidelity-claim.

Definition: logic.fidelity-claim
(pequal* (logic.fidelity-claim name)

(logic.por
’(pequal* (logic.appealp x) ’nil)

134

(logic.por
(logic.pequal (logic.function name ’(x axioms thms atbl))

’’nil)
’(pnot* (pequal* (logic.provablep (logic.conclusion x)

axioms thms atbl)
’nil)))))

Suppose we have used logic.proofp to prove the fidelity claim for some

new proof-checker, f . Then, we know that any time f accepts some appeal, x, the

conclusion of x is provable in the sense of logic.proofp. In other words, f only

accepts formulas which are provable. Hence, we can trust f , and we will allow it to

be used as a proof checker.

The function switch-proof-checker takes the name of a function as an ar-

gument. It ensures the fidelity claim has been established for this function, and then

switches *proof-checker* to the new function. If the fidelity claim has not been

established, an error is caused.

Lisp Code
(defun-comp switch-proof-checker (name)

(unless (MILAWA::logic.function-namep name)
(error "The name is invalid"))

(unless (MILAWA::memberp (MILAWA::logic.fidelity-claim name)
theorems)

(error "The fidelity claim has not been proven"))
(setf *proof-checker* name))

4.6 Reading Objects

Because the proofs accepted by logic.proofp are sometimes quite large, it is

useful to add a file-reading capability to our system so that proofs may be stored in

separate files. Reading these files can sometimes take a long time, so we introduce a

135

simple time-reporting macro. This macro evaluates form and returns its result, but

as a side-effect also prints a message that says how long it took to evaluate form.

Lisp Code
(CL-USER::in-package "CL-USER")

(defmacro report-time (message form)
‘(let* ((start-time (get-internal-real-time))

(value ,form)
(stop-time (get-internal-real-time))
(elapsed (/ (coerce (- stop-time start-time) ’float)

internal-time-units-per-second)))
(format t ";; ∼A took ∼$ seconds∼%" ,message elapsed)
value))

Common Lisp provides a flexible reader which can be used to parse text into

Lisp objects, and we will use this reader to obtain objects from the user. Lisp’s reader

allows for the introduction of numbered abbreviations so that, for instance, one may

write #1=(a . b) to define #1# as an abbreviation for (a . b).

Abbreviations are very useful, but many Lisps implement them quite ineffi-

ciently, e.g., using association lists. We therefore provide our own implementation of

the sharp-equal (e.g., #1=) and sharp-sharp (e.g., #1#) reader macros which store the

abbreviations in a hash table.

Lisp Code
(defvar *milawa-abbreviations-hash-table*)
(declaim (type hash-table *milawa-abbreviations-hash-table*))

(defun-comp milawa-sharp-equal-reader (stream subchar arg)
(declare (ignore subchar))
(multiple-value-bind
(value presentp)
(gethash arg *milawa-abbreviations-hash-table*)
(declare (ignore value))

136

(when presentp
(error "#∼A= is already defined." arg))

(let ((object (read stream)))
(setf (gethash arg *milawa-abbreviations-hash-table*)

object))))

(defun-comp milawa-sharp-sharp-reader (stream subchar arg)
(declare (ignore stream subchar))
(or (gethash arg *milawa-abbreviations-hash-table*)

(error "#∼A# used but not defined." arg)))

To instruct the Common Lisp reader to use our implementation of these

macros, we set up a new readtable and configure it appropriately.

Lisp Code
(defvar *milawa-readtable* (copy-readtable *readtable*))
(declaim (readtable *milawa-readtable*))

(let ((*readtable* *milawa-readtable*))
(set-dispatch-macro-character #\# #\#

#’milawa-sharp-sharp-reader)
(set-dispatch-macro-character #\# #\=

#’milawa-sharp-equal-reader))

To read objects from a file on disk, we use milawa-read-file. The let-

bindings ensure that a fresh hash-table is used for abbreviations, our custom sharp-

equal and sharp-sharp macros are used, and that symbols in the file are from the

MILAWA package by default. We read the entire file at once, and ensure that its

contents are acceptable.

Lisp Code
(defconstant unique-cons-for-eof (cons ’unique-cons ’for-eof))

(defun-comp milawa-read-file-aux (stream)

137

(let ((obj (read stream nil unique-cons-for-eof)))
(cond ((eq obj unique-cons-for-eof)

nil)
(t
(cons obj (milawa-read-file-aux stream))))))

(defun-comp milawa-read-file (filename)
(format t ";; Reading from ∼A∼%" filename)
(report-time "Reading the file"

(let* ((*milawa-abbreviations-hash-table* (make-hash-table
:size 10000
:rehash-size 100000
:test ’eql))

(*readtable* *milawa-readtable*)
(*package* milawa-package)
(stream (open filename

:direction :input
:if-does-not-exist :error))

(contents (milawa-read-file-aux stream)))
(close stream)
(if (acceptable-objectp contents)

contents
(error "unacceptable object encountered")))))

4.7 Events

We now explain how our system admits theorem events, recursive function

definition events, and witnessing function definition events.

Recall that a theorem event extends the history by adding some formula to the

list of theorems. To be admissible, the formula must be well-formed with respect to

the current arity table, and must be provable from the current axioms and theorems.

The function admit-theorem takes two arguments, the formula to prove and the

name of a file which allegedly contains a proof of this formula. It checks that the

138

formula is well formed and that the proof is valid, and extends the history by adding

the formula as a theorem. If the formula is already a theorem, we do not add it again.

Lisp Code
(defun-comp admit-theorem (formula filename)

(unless (MILAWA::logic.formulap formula)
(error "The conclusion, ∼A, is not a formula" formula))

(unless (MILAWA::logic.formula-atblp formula *arity-table*)
(error "The conclusion, ∼A, is not well-formed" formula))

(let ((proof (car (milawa-read-file filename))))
(unless (MILAWA::logic.appealp proof)

(error "The proof is not a valid appeal"))
(unless (equal (MILAWA::logic.conclusion proof) formula)

(error "The proof does not have the right conclusion"))
(unless (check-proof proof *axioms* *theorems* *arity-table*)

(error "The proof was rejected")))
(unless (MILAWA::memberp formula *theorems*)

(push formula *theorems*))
t)

Recall from page 59 that a recursive function definition event extends the his-

tory with a definitional axiom and a new binding in the arity table. To be admissible,

the name must be a new name which is not already in the arity table of h, the body

and measure must be well-formed with respect to the new arity table and may only

mention the formals, and the termination obligations must be provable.

The function admit-defun checks that these conditions are met, and if so

extends the history appropriately. As arguments, it takes the name, formals, body,

and measure of the function to be defined, and a flag that indicates whether the

function should be inlined or not; it also takes the name of a file which should contain

proofs of the termination obligations.

We begin by translating away any abbreviations in the body and the measure,

and by checking the admission criteria other than the termination obligations.

139

Lisp Code
(defun-comp admit-defun (name formals raw-body raw-measure inlinep

filename)
(let* ((body (MILAWA::logic.translate raw-body))

(measure (MILAWA::logic.translate raw-measure))
(arity (MILAWA::len formals))
(new-atbl (cons (cons name arity) *arity-table*)))

(unless (MILAWA::logic.function-namep name)
(error "The name is invalid"))

(unless (MILAWA::logic.variable-listp formals)
(error "The formals are not variables"))

(unless (MILAWA::uniquep formals)
(error "The formals are not unique"))

(unless (MILAWA::logic.termp body)
(error "The body did not translate to a term"))

(unless (MILAWA::logic.termp measure)
(error "The measure did not translate to a term"))

(unless (MILAWA::subsetp (MILAWA::logic.term-vars body) formals)
(error "The body mentions variables besides the formals"))

(unless (MILAWA::subsetp (MILAWA::logic.term-vars measure)
formals)

(error "The measure mentions variables besides the formals"))
(unless (MILAWA::logic.term-atblp body new-atbl)

(error "The body is not well-formed"))
(unless (MILAWA::logic.term-atblp measure new-atbl)

(error "The measure is not well-formed"))

Next, given that all of the above criteria have been met, we compute the

termination obligations. To ensure these formulas are provable, we check that the

supplied proofs are a list of appeals which establish each of these formulas, and that

these proofs are accepted by the currently trusted proof checker.

(let ((obligations (MILAWA::logic.termination-obligations
name formals body measure))

(proofs (car (milawa-read-file filename))))
(unless (MILAWA::logic.appeal-listp proofs)

140

(error "The proofs are not a list of appeals"))
(unless (equal (MILAWA::logic.strip-conclusions proofs)

obligations)
(error "The proofs have the wrong conclusions"))

(unless (report-time "Checking the proofs"
(check-proof-list proofs *axioms*

theorems new-atbl))
(error "A proof was rejected")))

Finally, we create a new Lisp function in the MILAWA package, extend the arity

table, and add the definitional axiom to the list of axioms. If the function already has

a Lisp definition, then defun-safe-fn will cause an error unless this new definition

is identical. As with theorem events, we do not redundantly extend the arity table or

list of axioms if the function has already been defined.

(defun-safe-fn name formals raw-body inlinep)
(unless (MILAWA::lookup name *arity-table*)

(push (cons name arity) *arity-table*))
(let ((new-axiom (MILAWA::logic.pequal

(MILAWA::logic.function name formals)
body)))

(unless (MILAWA::memberp new-axiom *axioms*)
(push new-axiom *axioms*))))

t)

Recall that a witnessing function definition includes a function name, f , a

variable, v, called the bound variable, a list of distinct variables, x1, . . . , xn called the

free variables, and a term, β, called its body. Such an event extends the arity table

by associating f with n, and adds the axiom

(por* (pequal* β nil)
(pnot* (pequal* ((lambda (v x1 . . . xn) β)

(f x1 . . . xn) x1 . . . xn)
nil))).

141

To be admissible, f must be a new name which is not already in the arity table, v

must not be any of the free variables, β must be well-formed with respect to the arity

table, and freevars(β) must be a subset of {v, x1, . . . , xn}.

The function admit-witness checks that a witnessing definition is admissible

and, if so, extends the history appropriately. As arguments, it takes the name, bound

variable, free variables, and body of the witnessing definition. We begin by translating

away any abbreviations in the body, and checking that the admissibility criteria have

been met.

Lisp Code
(defun-comp admit-witness (name bound-var free-vars raw-body)

(let* ((body (MILAWA::logic.translate raw-body))
(all-vars (cons bound-var free-vars)))

(unless (MILAWA::logic.function-namep name)
(error "Invalid function name"))

(unless (MILAWA::logic.variablep bound-var)
(error "The bound-var is not a variable"))

(unless (MILAWA::logic.variable-listp free-vars)
(error "The free-vars are not variables"))

(unless (MILAWA::uniquep (cons bound-var free-vars))
(error "The variables are not unique"))

(unless (MILAWA::logic.termp body)
(error "The body did not translate to a term"))

(unless (MILAWA::subsetp (MILAWA::logic.term-vars body)
all-vars)

(error "The body’s variables are not legal"))
(unless (MILAWA::logic.term-atblp body *arity-table*)

(error "The body is not well-formed"))

Given that all of the criteria have been met, we create a Lisp function in the

MILAWA package for this definition which simply causes an error. We also extend the

arity table and add the witnessing axiom. As with definitions, we do not extend the

arity table or axioms redundantly if this definition has already been given.

142

(defun-safe-fn name free-vars
‘(CL-USER::error "Called witnessing function ∼A.∼%"

’(,name ,bound-var ,free-vars ,raw-body))
nil)

(unless (MILAWA::lookup name *arity-table*)
(push (cons name (MILAWA::len free-vars)) *arity-table*))

(let ((new-axiom
(MILAWA::logic.por
(MILAWA::logic.pequal body ’’nil)
(MILAWA::logic.pnot
(MILAWA::logic.pequal
(MILAWA::logic.lambda
all-vars body
(cons (MILAWA::logic.function name free-vars)

free-vars))
’’nil)))))

(unless (MILAWA::memberp new-axiom *axioms*)
(push new-axiom *axioms*))))

t)

4.8 Checkpointing

Checking a large collection of proofs can take a long time, so it is useful to

be able to save our progress from time to time during the process. Although there is

no standard checkpointing mechanism for Common Lisp, many Lisp implementations

provide a way to save an “image” of a running Lisp session which can be restarted

later. In many Lisps, creating such an image also terminates the currently running

program.

Using “features,” it is generally possible to detect which Lisp implementation

we are running on. Then, on a per-implementation basis, we can implement the

function save-and-exit, which saves an image using the given filename as a prefix.

That is, the code following #+allegro is only used on Allegro Common Lisp, the code

143

following #+clozure is only used on Clozure Common Lisp, and so on. To facilitate

checking proofs with multiple computers that share a file system, it is convenient to

be able to give different names to the image files created by each system. Our save-

and-exit function requires that the constant image-extension has been defined by

the user.

Lisp Code
(defun-comp save-and-exit (filename)

#+allegro
(progn

(setq EXCL::*restart-init-function* ’main)
(EXCL::dumplisp
:name (concatenate ’string filename "." image-extension))
(exit))

#+clozure
(CCL::save-application
(concatenate ’string filename "." image-extension)
:toplevel-function #’main
:purify t)

#+clisp
(progn

(EXT:saveinitmem
(concatenate ’string filename "." image-extension)
:init-function #’main)
(quit))

#+cmu
(EXTENSIONS::save-lisp
(concatenate ’string filename "." image-extension)
:init-function #’main
:purify t)

#+sbcl
(SB-EXT:save-lisp-and-die
(concatenate ’string filename "." image-extension)
:toplevel #’main
:purify t)

144

#+scl
(EXT:save-lisp
(concatenate ’string filename "." image-extension)
:init-function #’main
:gc :full
:purify t)

;; Handler for other lisps
(error "implement save-and-exit on this lisp"))

4.9 The Command Loop

We now combine the above definitions into a coherent program. Our program

reads commands from standard input, processing each command in turn. Five kinds

of commands are supported.

(VERIFY name formula filename)
(DEFINE name formals body measure inlinep filename)
(SKOLEM name bound-var free-var body)
(SWITCH name)
(FINISH filename)

The VERIFY command is used to process a theorem event; the name is ignored

by the system and is only an annotation for the user, and the filename indicates a

file where a proof of the formula should be found. The DEFINE command is used

to process a recursive function definition event; its arguments are the same as those

for admit-defun, except that filename indicates a file where a list of proofs for the

termination obligations should be found. The SKOLEM command is used to process a

witnessing function definition, and its arguments are the same as those for admit-

witness. The SWITCH command is used to begin using name as the proof checker.

Finally, the FINISH command can be used to save the current session as a new Lisp

image, and stop processing commands.

145

To process any one of these commands, we introduce the function try-to-

accept-command. Most commands are not acceptable objects since they include file

names, which are strings. Since we have said we will not call MILAWA-package functions

such as MILAWA::tuplep on unacceptable objects, we implement safe-tuplep as an

alternative.

Lisp Code
(defun-comp safe-tuplep (n x)

(if (= n 0)
(not x)

(and (consp x)
(safe-tuplep (- n 1) (cdr x)))))

(defun-comp try-to-accept-command (cmd)
(cond
((not (consp cmd))
(error "Invalid command ∼A.∼%" cmd))

((eq (car cmd) ’MILAWA::verify)
(unless
(and (safe-tuplep 4 cmd)

(let ((name (second cmd))
(formula (third cmd))
(filename (fourth cmd)))

(format t "> VERIFY ∼A∼%" name)
(report-time "VERIFY"
(and (acceptable-objectp name)

(acceptable-objectp formula)
(stringp filename)
(admit-theorem formula filename)))))

(error "Invalid VERIFY: ∼A" cmd)))

((eq (car cmd) ’MILAWA::DEFINE)
(unless
(and (safe-tuplep 7 cmd)

(let ((name (second cmd))
(formals (third cmd))

146

(body (fourth cmd))
(measure (fifth cmd))
(inlinep (sixth cmd))
(filename (seventh cmd)))

(format t "> DEFINE ∼A∼%" name)
(report-time "DEFINE"
(and (acceptable-objectp name)

(acceptable-objectp formals)
(acceptable-objectp body)
(acceptable-objectp measure)
(stringp filename)
(admit-defun name formals body measure inlinep

filename)))))
(error "Invalid DEFINE: ∼A" cmd)))

((eq (car cmd) ’MILAWA::SKOLEM)
(unless
(and (safe-tuplep 5 cmd)

(let ((name (second cmd))
(bound-var (third cmd))
(free-vars (fourth cmd))
(body (fifth cmd)))

(format t "> SKOLEM ∼A∼%" name)
(report-time "SKOLEM"
(and (acceptable-objectp name)

(acceptable-objectp bound-var)
(acceptable-objectp free-vars)
(acceptable-objectp body)
(admit-witness name bound-var free-vars body)))))

(error "Invalid SKOLEM: ∼A" cmd)))

((eq (car cmd) ’MILAWA::SWITCH)
(unless
(and (safe-tuplep 2 cmd)

(let ((name (second cmd)))
(format t "> SWITCH ∼A∼%" name)
(report-time "SWITCH"
(switch-proof-checker name))))

(error "Invalid SWITCH: ∼A" cmd)))

147

((eq (car cmd) ’MILAWA::FINISH)
(unless
(and (safe-tuplep 2 cmd)

(let ((filename (second cmd)))
(format t "> FINISH ∼A∼%" filename)
(and (stringp filename)

(save-and-exit filename))))
(error "Invalid FINISH: ∼A" cmd)))

(t
(error "Invalid command: ∼A" cmd))))

We then repeatedly call try-to-accept-command on the commands we read

from the user. We read each command with milawa-read-command, which simply

reads from standard input. If the end of file is reached before any FINISH command

is encountered, we simply print a message and quit.

Lisp Code
(defun-comp try-to-accept-all-commands ()

(let* ((*package* milawa-package)
(cmd (milawa-read-command)))

(when (eq cmd unique-cons-for-eof)
(format t "All commands have been accepted.∼%")
(quit))

(try-to-accept-command cmd)
(try-to-accept-all-commands)))

Our main function, which is the starting point for the Lisp images we create

with save-and-exit, just prints a welcome message and calls try-to-accept-all-

commands.

Lisp Code
(defun-comp main ()

(format t "Milawa Proof Checker. %")

148

(try-to-accept-all-commands))

And with that, we use save-and-exit to create the executable for our base

system.

Lisp Code
(save-and-exit "base")

149

Part II

Building Proofs

150

Chapter 5

Propositional Calculus

If we regard equality formulas as atomic propositions, then together the asso-

ciativity, contraction, cut, expansion, and propositional schema rules form a propo-

sitional calculus which can be used to prove any tautology. But it would be difficult

to carry out much propositional reasoning using the system presented in Chapter 4

since so many proof steps would be required.

In a mathematical logic, a derived rule of inference is an explanation of how,

given certain inputs, a particular sequence of steps may be followed to obtain a desired

proof. For instance, in our logic, if we are given a proof of (por* A B), where A

and B are any formulas, then may obtain a proof of (por* B A) using a derived

rule we call commutativity of or—first, use the propositional schema to conclude

(por* (pnot* A) A); next use the cut rule to combine this with the given proof of

(por* A B) to conclude (por* B A).

In this chapter, we explain how we implement and reason about derived rules

of inference, and develop several derived rules that allow propositional reasoning to

be carried out more easily.

5.1 Implementing Derived Rules

Derived rules of inference can be implemented as functions which, given the

necessary input proofs and formulas, construct the desired proof. This is a fully

expansive style of proof building. Calling these functions is like writing proofs at a

151

“high level,” i.e., in terms of derived rules. But the resulting proofs are composed

entirely of the primitive proof steps accepted by logic.proofp. A limitation of this

approach is that, in practice, these proofs may be too large to construct and check,

so we must be conscious of how many primitive steps our derivations will require.

Before implementing derived rules, we begin by writing proof-building func-

tions for each primitive rule of inference. We generally use the prefix “build.” when

naming functions that construct proofs. Given any formula A, build.proposit-

ional-schema constructs an appeal which concludes (por* (pnot* A) A). If A is

a well-formed formula, then this appeal will be accepted by logic.proofp since the

propositional schema is one of the primitive rules it allows.

Definition: build.propositional-schema
(pequal* (build.propositional-schema a)

(list ’propositional-schema
(logic.por (logic.pnot a) a)))

As another example, build.expansion implements the expansion rule. Given

a formula, A, and a proof, x, of some formula B, it produces a proof of (por* A B).

Notice how the input proof, x, becomes a subproof of the newly constructed proof.

Definition: build.expansion
(pequal* (build.expansion a x)

(list ’expansion
(logic.por a (logic.conclusion x))
(list x)))

Similarly, we can define build.cut, which, given proofs of (por* A B) and

(por* (pnot* A) C), builds a proof of (por* B C).

Definition: build.cut
(pequal* (build.cut x y)

(list ’cut

152

(logic.por (logic.vrhs (logic.conclusion x))
(logic.vrhs (logic.conclusion y)))

(list x y)))

After introducing similar constructors for the other primitive rules, we can

begin implementing derived rules of inference. For instance, here is how we might

implement commutativity of or.

Definition: build.commute-or
(pequal* (build.commute-or x)

(build.cut x (build.propositional-schema
(logic.vlhs (logic.conclusion x)))))

As another example, the derived rule called right expansion allows us to de-

rive (por* A B) given a proof of A—first, from the given proof, use expansion

to conclude (por* B A); next, apply the commutativity of or rule to conclude

(por* A B). We define build.right-expansion to perform these steps; as ar-

guments, x should be the proof of A, and b should be the formula B.

Definition: build.right-expansion
(pequal* (build.right-expansion x b)

(build.commute-or (build.expansion b x)))

To the caller, there is little difference between a derived rule and a primitive

rule. For instance, in build.right-expansion above, we called upon build.com-

mute-or just as we have called upon build.cut, build.expansion, and so on. This

is useful since it allows us to begin describing proofs in more concise terms, i.e., we

can now refer to commute or, right expansion, and so on, rather than using only

primitive steps.

153

5.2 Reasoning about Derived Rules

These functions also play a key role in our fidelity proof. To justify the use of

every proof-building function, f , we establish that when f is given valid inputs, then

its result is (1) “well-typed”—it is a valid appeal, (2) “relevant”—it has the desired

conclusion, and (3) “faithful”—it is accepted by logic.proofp. Since our derived

rules never look inside input proofs to see which steps were used, but instead only

consider the conclusion of each input proof, these lemmas are sufficient for reasoning

about the composition of proof-building functions.

We now go into some detail about how this is done in our ACL2 proof plan.

Our usual sequence for introducing a proof-building function, f , is as follows. First,

we define f and prove these three properties. Then we “disable” f , which instructs

ACL2 not to use its definition in later proofs, but instead to reason about f using

only these lemmas.

To begin with, we establish these properties for the primitive proof-building

functions. This work is somewhat different than proving the properties for derived

rules since these functions are not written in terms of other proof-building functions,

but rather are explicitly making appeals by consing together a method, a conclusion,

and so on. Hence, to show these functions are well-typed, relevant, and faithful, we

instruct ACL2 to use the definitions of functions which we would normally leave dis-

abled, including our accessors for appeals (logic.method, logic.conclusion, . . .),

our recognizers for appeals and proofs (logic.appealp, logic.proofp), and our

step-checking functions (logic.appeal-step-okp, logic.propositional-schema-

okp, logic.cut-okp, . . .).

As an example, here are our ACL2 theorems for the propositional schema.

154

ACL2 Code
(defthm logic.appealp-of-build.propositional-schema

(implies (logic.formulap a)
(logic.appealp (build.propositional-schema a))))

(defthm logic.conclusion-of-build.propositional-schema
(equal (logic.conclusion (build.propositional-schema a))

(logic.por (logic.pnot a) a)))

(defthm logic.proofp-of-build.propositional-schema
(implies (logic.formula-atblp a atbl)

(logic.proofp (build.propositional-schema a)
axioms thms atbl)))

The theorems for expansion are quite similar.

ACL2 Code
(defthm logic.appealp-of-build.expansion

(implies (and (logic.formulap a)
(logic.appealp x))

(logic.appealp (build.expansion a x))))

(defthm logic.conclusion-of-build.expansion
(equal (logic.conclusion (build.expansion a x))

(logic.por a (logic.conclusion x))))

(defthm logic.proofp-of-build.expansion
(implies (and (logic.formula-atblp a atbl)

(logic.proofp x axioms thms atbl))
(logic.proofp (build.expansion a x) axioms thms atbl)))

The theorems for cut are slightly more involved since, to be valid, the two

input proofs must be related to each other in just the right way.

155

ACL2 Code
(defthm logic.appealp-of-build.cut

(implies
(and (logic.appealp x)

(logic.appealp y)
(equal (logic.fmtype (logic.conclusion x)) ’por*)
(equal (logic.fmtype (logic.conclusion y)) ’por*)
(equal (logic.fmtype (logic.vlhs (logic.conclusion y)))

’pnot*)
(equal (logic.vlhs (logic.conclusion x))

(logic.∼arg (logic.vlhs (logic.conclusion y)))))
(logic.appealp (build.cut x y))))

(defthm logic.conclusion-of-cut
(equal (logic.conclusion (build.cut x y))

(logic.por (logic.vrhs (logic.conclusion x))
(logic.vrhs (logic.conclusion y)))))

(defthm logic.proofp-of-build.cut
(implies
(and (equal (logic.fmtype (logic.conclusion x)) ’por*)

(equal (logic.fmtype (logic.conclusion y)) ’por*)
(equal (logic.fmtype (logic.vlhs (logic.conclusion y)))

’pnot*)
(equal (logic.vlhs (logic.conclusion x))

(logic.∼arg (logic.vlhs (logic.conclusion y))))
(logic.proofp x axioms thms atbl)
(logic.proofp y axioms thms atbl))

(logic.proofp (build.cut x y) axioms thms atbl)))

After we have proven analogous rules for each of the other primitive proof-

building functions, we disable their definitions and also the definitions of logic.ap-

pealp, logic.proofp, and so on. When we introduce our functions for derived rules,

such as build.commute-or, we always construct proofs using these proof-building

156

functions, rather than by directly writing (list ’propositional-schema . . .) and

so on, so that we do not need to consider the definition of logic.proofp again.

How can we prove the three theorems for build.commute-or? The easiest

example is the relevance theorem. Recall that the commutativity of or rule is intended

to allow us to prove (por* B A) when given a proof of (por* A B), so we write

its relevance theorem as the following goal for ACL2 to prove:

(equal (logic.conclusion (build.commute-or x))
(logic.por (logic.vrhs (logic.conclusion x))

(logic.vlhs (logic.conclusion x))))

The ACL2 proof proceeds roughly as follows. First, by the definition of

build.commute-or, the goal is equivalent to:

(equal (logic.conclusion
(build.cut x (build.propositional-schema

(logic.vlhs (logic.conclusion x)))))
(logic.por (logic.vrhs (logic.conclusion x))

(logic.vlhs (logic.conclusion x))))

Next, by the relevance theorem for cut, logic.conclusion-of-build.cut,

we may reduce the goal to:

(equal (logic.por (logic.vrhs (logic.conclusion x))
(logic.vrhs (logic.conclusion

(build.propositional-schema
(logic.vlhs
(logic.conclusion x))))))

(logic.por (logic.vrhs (logic.conclusion x))
(logic.vlhs (logic.conclusion x))))

Now, we use the relevance theorem for the propositional schema, logic.con-

clusion-of-build.propositional-schema, to reduce the goal to:

157

(equal (logic.por (logic.vrhs (logic.conclusion x))
(logic.vrhs
(logic.por
(logic.pnot (logic.vlhs (logic.conclusion x)))
(logic.vlhs (logic.conclusion x)))))

(logic.por (logic.vrhs (logic.conclusion x))
(logic.vlhs (logic.conclusion x))))

Finally, a trivial theorem, (equal (logic.vrhs (logic.por x y)) y), can

be used to reduce the goal to:

(equal (logic.por (logic.vrhs (logic.conclusion x))
(logic.vlhs (logic.conclusion x)))

(logic.por (logic.vrhs (logic.conclusion x))
(logic.vlhs (logic.conclusion x))))

Which is trivially true by the reflexivity of equal.

It is slightly more work to prove the other theorems, because the well-typedness

and faithfulness theorems build.propositional-schema and build.cut can only

be used when certain hypotheses are shown to hold. But the basic approach is the

same: we expand the definition of build.commute-or to recast the problem into

simpler proof-building functions, and we then call upon our lemmas about these

functions to prove the resulting goal.

In the end, we use ACL2 to prove:

ACL2 Code
(defthm logic.appealp-of-build.commute-or

(implies (and (logic.appealp x)
(equal (logic.fmtype (logic.conclusion x)) ’por*))

(logic.appealp (build.commute-or x))))

(defthm logic.conclusion-of-build.commute-or

158

(equal (logic.conclusion (build.commute-or x))
(logic.por (logic.vrhs (logic.conclusion x))

(logic.vlhs (logic.conclusion x)))))

(defthm logic.proofp-of-build.commute-or
(implies (and (logic.proofp x axioms thms atbl)

(equal (logic.fmtype (logic.conclusion x)) ’por*))
(logic.proofp (build.commute-or x) axioms thms atbl)))

At this point, reasoning about build.commute-or is no more difficult than

reasoning about the primitives.

5.3 Simple Derivations

Since we will be writing many formulas in this chapter, we adopt a more

concise, infix notation. We generally use upper-case italic letters, A,B, . . . , to stand

for formulas, and lower-case italic letters such as a, b, . . . for terms. We write t1 = t2

for (pequal* t1 t2), t1 6= t2 for (pnot* (pequal* t1 t2)), ¬A for (pnot* A), and

A ∨ B for (por* A B). We say ∨ associates to the right so A ∨ B ∨ C means

A ∨ (B ∨ C), and ¬ binds more tightly than ∨ so ¬A ∨B means (¬A) ∨B.

We will also write derivations in a concise format. When, given a proof of the

formulas premise1, . . . , premisen, the rule allows us to obtain a proof of conclusion,

we begin by writing

premise1
...
premisen
conclusion.

We then explain how the conclusion is derived from the premises by writing a list of

formulas and their justifications. Often, a particular formula follows from the previous

formula (or, for rules such as Cut, from the previous two formulas), and so we will

159

only mention which rule is being used. In other cases, we may label formulas so that

we may refer to them later.

For instance, the derivation below describes build.commute-or. For every

such derivation that we write, we introduce a proof-building function that carries out

the described steps. We also prove this function is well-typed, relevant, and faithful,

as described in the last section. Note that all of the derivations and formal theorems

presented in this dissertation are transcribed from their implementation as functions.

Since their correctness has been mechanically checked, any errors in our presentation

are transcription errors.

Derived Rule 1. Commute or

A ∨ B
B ∨ A

Derivation. (2)

A ∨ B Given
¬A ∨ A Prop. schema
B ∨ A Cut

We use these proof-building functions in our bootstrapping process to con-

struct the fully expansive proofs of Milawa’s fidelity for logic.proofp to check.

Because of this, the number of proof steps introduced by each builder is a practical

concern. The (2) above denotes this cost, and indicates that each use of this rule

extends the input proof with two primitive steps.

As a special note to the reader, this dissertation presents so many derivations

that it would be hard to remember them all. In the electronic version, our justifica-

tions are hyperlinks which can be followed to see the rule being used. In the paper

version, the index topics Derived Rules and Formal Theorems may be useful.

160

We now present a number of simple derived rules. Finding these derivations is

often an exercise for students in introductory logic classes, so this is all fairly routine.

Since our rules of propositional logic are the same as Shoenfield [83] introduced, and

have since then notably been used by Shankar [82], NQTHM [12], ACL2 [50], we have

taken advantage of these resources when finding the derivations below.

Derived Rule 2. Right expansion

A
A ∨ B

Derivation. (3)

A ∨ B Given
B ∨ A Expansion
A ∨ B Commute or

Derived Rule 3. Modus ponens
A
¬A ∨ B
B

Derivation. (5)

A Given
A ∨ B Right expansion
¬A ∨ B Given
B ∨ B Cut
B Contraction

Derived Rule 4. Modus ponens 2
¬A
A ∨ B
B

Derivation. (5)

161

¬A Given
¬A ∨ B Right expansion
A ∨ B Given
B ∨ B Cut
B Contraction

Derived Rule 5. Right associativity

(A ∨ B) ∨ C
A ∨ B ∨ C

Derivation. (8)

(A ∨ B) ∨ C Given
C ∨ A ∨ B Commute or
(C ∨ A) ∨ B Associativity
B ∨ C ∨ A Commute or
(B ∨ C) ∨ A Associativity
A ∨ B ∨ C Commute or

Derived Rule 6. Cancel ¬¬

¬¬A
A

Derivation. (6)

¬¬A Given
¬A ∨ A Prop. schema
A Modus ponens 2

Derived Rule 7. Insert ¬¬

A
¬¬A

Derivation. (8)

¬¬A ∨ ¬A Prop. schema

162

¬A ∨ ¬¬A Commute or
A Given
¬¬A Modus ponens

Derived Rule 8. Lhs insert ¬¬

A ∨ B
¬¬A ∨ B

Derivation. (6)

¬¬A ∨ ¬A Prop. schema
¬A ∨ ¬¬A Commute or
A ∨ B Given
B ∨ ¬¬A Cut
¬¬A ∨ B Commute or

Derived Rule 9. Lhs cancel ¬¬

¬¬A ∨ B
A ∨ B

Derivation. (2)

¬A ∨ A Prop. schema
¬¬A ∨ B Given
A ∨ B Cut

We call many derivations disjoined, by which we mean they perform some

operation in the presence of an “extra” disjunct, usually named P . In logic classes,

the proof of the deduction law generally involves proving the disjoined version of each

primitive rule. It is straightforward to prove the disjoined rules for expansion and

contraction.

163

Derived Rule 10. Disjoined left expansion

P ∨ A
P ∨ B ∨ A

Derivation. (6)

P ∨ A Given
A ∨ P Commute or
B ∨ A ∨ P Expansion
(B ∨ A) ∨ P Associativity
P ∨ B ∨ A Commute or

Derived Rule 11. Disjoined contraction

P ∨ A ∨ A
P ∨ A

Derivation. (6)

P ∨ A ∨ A Given
(P ∨ A) ∨ A Associativity
A ∨ P ∨ A Commute or
P ∨ A ∨ P ∨ A Expansion
(P ∨ A) ∨ P ∨ A Associativity
P ∨ A Contraction

Our derivation of the disjoined associativity and cut rules is considerably more

involved, and we make use of some auxiliary derivations.

Derived Rule 12. Merge negatives
¬A
¬B
¬(A ∨ B)

Derivation. (16)

¬(A ∨ B) ∨ A ∨ B Prop. schema
(¬(A ∨ B) ∨ A) ∨ B Associativity

164

B ∨ ¬(A ∨ B) ∨ A Commute or
¬B Given
¬(A ∨ B) ∨ A Modus ponens 2
A ∨ ¬(A ∨ B) Commute or
¬A Given
¬(A ∨ B) Modus ponens 2

Derived Rule 13. Merge implications lemma 1

¬B ∨ C
A ∨ C ∨ ¬(A ∨ B)

Derivation. (10)

¬(A ∨ B) ∨ A ∨ B Prop. schema
(¬(A ∨ B) ∨ A) ∨ B Associativity
B ∨ ¬(A ∨ B) ∨ A Commute or
¬B ∨ C Given
(¬(A ∨ B) ∨ A) ∨ C Cut
C ∨ ¬(A ∨ B) ∨ A Commute or
(C ∨ ¬(A ∨ B)) ∨ A Associativity
A ∨ C ∨ ¬(A ∨ B) Commute or

Derived Rule 14. Merge implications lemma 2
A ∨ C ∨ D
¬A ∨ C
D ∨ C

Derivation. (12)

A ∨ C ∨ D Given
¬A ∨ C Given
(C ∨ D) ∨ C Cut
C ∨ C ∨ D Commute or
(C ∨ C) ∨ D Associativity
D ∨ C ∨ C Commute or
D ∨ C Dj. contraction

165

Derived Rule 15. Merge implications
¬A ∨ C
¬B ∨ C
¬(A ∨ B) ∨ C

Derivation. (22)

¬B ∨ C Given
A ∨ C ∨ ¬(A ∨ B) Merge imp. lm. 1
¬A ∨ C Given
¬(A ∨ B) ∨ C Merge imp. lm. 2

Derived Rule 16. Disjoined commute or lemma 1

P ∨ A ∨ B
A ∨ (B ∨ A) ∨ P

Derivation. (9)

P ∨ A ∨ B Given
(P ∨ A) ∨ B Associativity
A ∨ (P ∨ A) ∨ B Expansion
(A ∨ P ∨ A) ∨ B Associativity
B ∨ A ∨ P ∨ A Commute or
(B ∨ A) ∨ P ∨ A Associativity
((B ∨ A) ∨ P) ∨ A Associativity
A ∨ (B ∨ A) ∨ P Commute or

Derived Rule 17. Disjoined commute or

P ∨ A ∨ B
P ∨ B ∨ A

Derivation. (20)

P ∨ A ∨ B Given
A ∨ (B ∨ A) ∨ P Dj. comm. or lm. 1
B ∨ A ∨ (B ∨ A) ∨ P Expansion
(B ∨ A) ∨ (B ∨ A) ∨ P Associativity

166

((B ∨ A) ∨ B ∨ A) ∨ P Associativity
P ∨ (B ∨ A) ∨ B ∨ A Commute or
P ∨ B ∨ A Dj. contraction

Derived Rule 18. Disjoined assoc lemma 1a

P ∨ A ∨ D
A ∨ B ∨ (C ∨ D) ∨ P

Derivation. (10)

P ∨ A ∨ D Given
(P ∨ A) ∨ D Associativity
D ∨ P ∨ A Commute or
C ∨ D ∨ P ∨ A Expansion
(C ∨ D) ∨ P ∨ A Associativity
((C ∨ D) ∨ P) ∨ A Associativity
B ∨ ((C ∨ D) ∨ P) ∨ A Expansion
(B ∨ (C ∨ D) ∨ P) ∨ A Associativity
A ∨ B ∨ (C ∨ D) ∨ P Commute or

Derived Rule 19. Disjoined assoc lemma 1

¬(A ∨ D) ∨ (A ∨ B) ∨ C ∨ D

Derivation. (15)

¬(A ∨ D) ∨ A ∨ D Prop. schema
A ∨ B ∨ (C ∨ D) ∨ ¬(A ∨ D) Dj. assoc lm. 1a
(A ∨ B) ∨ (C ∨ D) ∨ ¬(A ∨ D) Associativity
((A ∨ B) ∨ C ∨ D) ∨ ¬(A ∨ D) Associativity
¬(A ∨ D) ∨ (A ∨ B) ∨ C ∨ D Commute or

Derived Rule 20. Disjoined assoc lemma 2a

P ∨ B ∨ C
A ∨ B ∨ (C ∨ D) ∨ P

167

Derivation. (10)

P ∨ B ∨ C Given
(P ∨ B) ∨ C Associativity
D ∨ (P ∨ B) ∨ C Expansion
(D ∨ P ∨ B) ∨ C Associativity
C ∨ D ∨ P ∨ B Commute or
(C ∨ D) ∨ P ∨ B Associativity
((C ∨ D) ∨ P) ∨ B Associativity
B ∨ (C ∨ D) ∨ P Commute or
A ∨ B ∨ (C ∨ D) ∨ P Expansion

Derived Rule 21. Disjoined assoc lemma 2

¬(B ∨ C) ∨ (A ∨ B) ∨ C ∨ D

Derivation. (15)

¬(B ∨ C) ∨ B ∨ C Prop. schema
A ∨ B ∨ (C ∨ D) ∨ ¬(B ∨ C) Dj. assoc lm. 2a
(A ∨ B) ∨ (C ∨ D) ∨ ¬(B ∨ C) Associativity
((A ∨ B) ∨ C ∨ D) ∨ ¬(B ∨ C) Associativity
¬(B ∨ C) ∨ (A ∨ B) ∨ C ∨ D Commute or

Derived Rule 22. Disjoined assoc lemma 3a

¬((A ∨ D) ∨ B ∨ C) ∨ (A ∨ B) ∨ C ∨ D

Derivation. (52)

¬(A ∨ D) ∨ (A ∨ B) ∨ C ∨ D Dj. assoc lm. 1
¬(B ∨ C) ∨ (A ∨ B) ∨ C ∨ D Dj. assoc lm. 2
¬((A ∨ D) ∨ B ∨ C) ∨ (A ∨ B) ∨ C ∨ D Merge imp.

168

Derived Rule 23. Disjoined assoc lemma 3

(A ∨ D) ∨ B ∨ C
(A ∨ B) ∨ C ∨ D

Derivation. (57)

¬((A ∨ D) ∨ B ∨ C) ∨ (A ∨ B) ∨ C ∨ D Dj. assoc lm. 3a
(A ∨ D) ∨ B ∨ C Given
(A ∨ B) ∨ C ∨ D Modus ponens

Derived Rule 24. Disjoined right associativity

P ∨ (A ∨ B) ∨ C
P ∨ A ∨ B ∨ C

Derivation. (86)

P ∨ (A ∨ B) ∨ C Given
P ∨ C ∨ A ∨ B Dj. commute or
(P ∨ C) ∨ A ∨ B Associativity
(P ∨ A) ∨ B ∨ C Dj. assoc lm. 3
P ∨ A ∨ B ∨ C Right assoc.

Derived Rule 25. Disjoined assoc lemma 4

(P ∨ A) ∨ B ∨ C
(P ∨ C) ∨ A ∨ B

Derivation. (97)

(P ∨ A) ∨ B ∨ C Given
(P ∨ A) ∨ C ∨ B Dj. commute or
(P ∨ C) ∨ B ∨ A Dj. assoc lm. 3
(P ∨ C) ∨ A ∨ B Dj. commute or

169

Derived Rule 26. Disjoined associativity

P ∨ A ∨ B ∨ C
P ∨ (A ∨ B) ∨ C

Derivation. (126)

P ∨ A ∨ B ∨ C Given
(P ∨ A) ∨ B ∨ C Associativity
(P ∨ C) ∨ A ∨ B Dj. assoc lm. 4
P ∨ C ∨ A ∨ B Right assoc.
P ∨ (A ∨ B) ∨ C Dj. commute or

Derived Rule 27. Disjoined cut lemma 1
P ∨ A ∨ B
P ∨ ¬A ∨ C
(B ∨ P) ∨ C ∨ P

Derivation. (21)

P ∨ A ∨ B Given
(A ∨ B) ∨ P Commute or
A ∨ B ∨ P Right assoc. (*1)
P ∨ ¬A ∨ C Given
(¬A ∨ C) ∨ P Commute or
¬A ∨ C ∨ P Right assoc.
(B ∨ P) ∨ C ∨ P Cut *1

Derived Rule 28. Disjoined cut lemma 2
P ∨ A ∨ B
P ∨ ¬A ∨ C
(B ∨ C) ∨ P ∨ P

Derivation. (78)

P ∨ A ∨ B Given
P ∨ ¬A ∨ C Given
(B ∨ P) ∨ C ∨ P Dj. cut lemma 1
(B ∨ C) ∨ P ∨ P Dj. assoc lm. 3

170

Derived Rule 29. Disjoined cut
P ∨ A ∨ B
P ∨ ¬A ∨ C
P ∨ B ∨ C

Derivation. (86)

P ∨ A ∨ B Given
P ∨ ¬A ∨ C Given
(B ∨ C) ∨ P ∨ P Dj. cut lemma 2
(B ∨ C) ∨ P Dj. contraction
P ∨ B ∨ C Commute or

Next, for pragmatic reasons, it is useful to develop efficient functions to per-

form disjoined right expansion and modus ponens steps.

Derived Rule 30. Disjoined right expansion

P ∨ A
P ∨ A ∨ B

Derivation. (7)

P ∨ A Given
B ∨ P ∨ A Expansion
(B ∨ P) ∨ A Associativity
A ∨ B ∨ P Commute or
(A ∨ B) ∨ P Associativity
P ∨ A ∨ B Commute or

Derived Rule 31. Disjoined modus ponens
P ∨ A
P ∨ ¬A ∨ B
P ∨ B

Derivation. (14)

P ∨ A Given

171

B ∨ P ∨ A Expansion
(B ∨ P) ∨ A Associativity
A ∨ B ∨ P Commute or (*1)
P ∨ ¬A ∨ B Given
(P ∨ ¬A) ∨ B Associativity
B ∨ P ∨ ¬A Commute or
(B ∨ P) ∨ ¬A Associativity
¬A ∨ B ∨ P Commute or
(B ∨ P) ∨ B ∨ P Cut *1
B ∨ P Contraction
P ∨ B Commute or

Derived Rule 32. Disjoined modus ponens 2
P ∨ ¬A
P ∨ A ∨ B
P ∨ B

Derivation. (14)

P ∨ A ∨ B Given
(P ∨ A) ∨ B Associativity
B ∨ P ∨ A Commute or
(B ∨ P) ∨ A Associativity
A ∨ B ∨ P Commute or (*1)
P ∨ ¬A Given
B ∨ P ∨ ¬A Expansion
(B ∨ P) ∨ ¬A Associativity
¬A ∨ B ∨ P Commute or
(B ∨ P) ∨ B ∨ P Cut *1
B ∨ P Contraction
P ∨ B Commute or

5.4 Recursive Derivations

The rules we have developed so far are very limited. More interesting derived

rules are possible when proofs are constructed recursively. As a first example of a

172

recursive derived rule, we develop a rule which allows us to repeatedly apply modus

ponens. We write this rule as follows:

A1
...
An
¬A1 ∨ · · · ∨ ¬An ∨B
B

We adopt some conventions for the use of ellipses in disjunctions. When we

write A ∨ B1 ∨ · · · ∨ Bn ∨ C, we intend to represent the formula which would be

obtained by running

(logic.disjoin-formulas (list A B1 . . . Bn C)).

That is, when n = 0, the formula is A∨C; when n = 1, it is A∨B1∨C; when n = 2,

it is A ∨B1 ∨B2 ∨ C; and so on.

Parentheses may be used to group elided disjuncts into a right-associated sub-

formula. For instance, consider A∨ (B1 ∨ · · · ∨Bn)∨C. In this case, when n = 0 the

formula is A ∨C; when n = 1, it is A ∨B1 ∨C; when n = 2, it is A ∨ (B1 ∨B2) ∨C;

and so on. We may also write A1...n as shorthand for (A1 ∨ · · · ∨ An). For instance,

A ∨B1...n ∨ C means A ∨ (B1 ∨ · · · ∨Bn) ∨ C.

Finally, there is no “empty formula,” so when a formula is composed entirely

of elided disjuncts, then implicitly at least one must be non-empty. For instance, if

we use A1 ∨ · · · ∨An as a formula, then n must be at least one. Similarly, if we write

A1...n ∨B1...m, then n and m may not simultaneously be zero.

We now return our attention to our rule for repeatedly applying modus ponens.

We explain how to carry out this derivation by induction on n.

173

Derived Rule 33. Modus ponens list
A1
...
An
¬A1 ∨ · · · ∨ ¬An ∨B
B

Derivation. (5n)

As a basis, if n = 0, then we have already been given a proof of B. Otherwise,

n > 0, and we may recursively derive B given proofs of A2, . . . , An, and ¬A2 ∨ · · · ∨

¬An ∨ B. Since we have been given proofs of A2, . . . , An, we only need to derive

¬A2 ∨ · · · ∨ ¬An ∨B, which is easy:

A1 Given
¬A1 ∨ · · · ∨ ¬An ∨B Given
¬A2 ∨ · · · ∨ ¬An ∨B Modus ponens

It is straightforward to implement this rule as the recursive function, build.-

modus-ponens-list, which takes as arguments b, the formula B; as, the proofs of

A1, . . . , An; and base, the proof of ¬A1 ∨ · · · ∨ ¬An ∨B.

Definition: build.modus-ponens-list
(pequal* (build.modus-ponens-list b as base)

(if (consp as)
(let ((step (build.modus-ponens (car as) base)))
(build.modus-ponens-list b (cdr as) step))

base))

Recursive derivations fit easily into our reasoning framework. By recreating

the derivation above as an inductive proof in ACL2, we can prove that build.modus-

ponens-list is well-typed, relevant, and faithful. The resulting ACL2 theorems are

as follows.

174

ACL2 Code
(defthm logic.appealp-of-build.modus-ponens-list

(implies (and (logic.formulap b)
(logic.appeal-listp as)
(logic.appealp base)
(equal (logic.conclusion base)

(logic.disjoin-formulas
(app (logic.negate-formulas

(logic.strip-conclusions as))
(list b)))))

(logic.appealp (build.modus-ponens-list b as base))))

(defthm logic.conclusion-of-build.modus-ponens-list
(implies (and (logic.formulap b)

(logic.appeal-listp as)
(logic.appealp base)
(equal (logic.conclusion base)

(logic.disjoin-formulas
(app (logic.negate-formulas

(logic.strip-conclusions as))
(list b)))))

(equal (logic.conclusion (build.modus-ponens-list b as base))
b)))

(defthm forcing-logic.proofp-of-build.modus-ponens-list
(implies (and (logic.formulap b)

(logic.appeal-listp as)
(logic.appealp base)
(equal (logic.conclusion base)

(logic.disjoin-formulas
(app (logic.negate-formulas

(logic.strip-conclusions as))
(list b))))

(logic.proof-listp as axioms thms atbl)
(logic.proofp base axioms thms atbl))

(logic.proofp (build.modus-ponens-list b as base)
axioms thms atbl)))

175

We can similarly derive the rules Modus Ponens 2 List and Disjoined Modus

Ponens List, but we omit the details since they are nearly identical to the above. The

derivations add 5n and 14n proof steps, respectively.

Derived Rule 34. Modus ponens 2 list
¬A1
...
¬An
A1 ∨ · · · ∨ An ∨B
B

Derived Rule 35. Disjoined modus ponens list
P ∨ A1
...
P ∨ An
P ∨ ¬A1 ∨ · · · ∨ ¬An ∨B
P ∨B

Another example of a recursively defined rule is Multi-assoc expansion. Note

that this rule is quite efficient, expanding into at most 2i+ 7 proof steps.

Derived Rule 36. Multi-assoc expansion

Ai ∨ P
(A1 ∨ · · · ∨ An) ∨ P

Derivation. (∼ 2i+ 7)

As a basis, suppose n = 1. Then i = 1 and we have already been given the

desired proof.

Otherwise, n > 1 and we consider two cases. If i = 1, then we may derive our

goal as follows:

A1 ∨ P Given
A1 ∨ (A2 ∨ · · · ∨ An) ∨ P Dj. left expansion
(A1 ∨ · · · ∨ An) ∨ P Associativity

176

Otherwise, i > 1 so we may recursively derive (A2∨ · · ·∨An)∨P from Ai∨P .

Then,

Ai ∨ P Given
(A2 ∨ · · · ∨ An) ∨ P Recursive construction
A1 ∨ (A2 ∨ · · · ∨ An) ∨ P Expansion
(A1 ∨ · · · ∨ An) ∨ P Associativity

Definition: build.multi-assoc-expansion
(pequal* (build.multi-assoc-expansion x as)

(if (and (consp as)
(consp (cdr as)))

(if (equal (car as) (logic.vlhs (logic.conclusion x)))
;; i = 1
(build.associativity
(build.disjoined-left-expansion
x
(logic.disjoin-formulas (cdr as))))

;; i > 1
(build.associativity
(build.expansion
(car as)
(build.multi-assoc-expansion x (cdr as)))))

x))

5.5 Subsets

We now turn our attention to developing a more powerful rule of inference,

the Generic Subset rule, which, from a proof of A1 ∨ · · · ∨An, allows us to derive the

formula B1 ∨ · · · ∨Bm, so long as {A1, . . . , An} ⊆ {B1, . . . , Bm}.

This effort will require us to develop a few auxiliary rules. Our approach is

adapted from Shankar’s [82] development of the same derived rule. In particular, our

Multi Expansion rule is what he called M1-proof, our Multi Or Expansion (Step) is

177

his M2-Proof(-Step), our Generic Subset Step rule is a variant of his M3-Proof, and

our Generic Subset rule is his M-Proof.

Derived Rule 37. Multi-expansion

Ai
A1 ∨ · · · ∨ An

Derivation. (∼ i+ 3)

As a basis, if n = 1 then we are given our desired proof. Otherwise, suppose

n > 1. If i = 1 then we have been given a proof of A1, so we may follow these steps:

A1 Given
A1 ∨ · · · ∨ An Right expansion

Otherwise, i > 1 so we may recursively construct a proof of A2∨ · · ·∨An from

Ai. Then,

Ai Given
A2 ∨ · · · ∨ An Recursive construction
A1 ∨ · · · ∨ An Expansion

Derived Rule 38. Multi-or expansion step

P ∨ Ai
P ∨ A1 ∨ · · · ∨ An

Derivation. (∼ 6i+ 7)

As a basis, if n = 1 then we are given our desired proof.

Otherwise, suppose n > 1. If i = 1, we have been given P ∨ A1. Then,

P ∨ A1 Given
P ∨ A1 ∨ · · · ∨ An Dj. right expansion

Otherwise, from our proof of Ai we can recursively build a proof of P ∨ A2 ∨

· · · ∨ An. Then,

178

Ai Given
P ∨ (A2 ∨ · · · ∨ An) Recursive construction
P ∨ (A1 ∨ · · · ∨ An) Dj. left expansion

Derived Rule 39. Multi-or expansion

Ai ∨ Aj
A1 ∨ · · · ∨ An

Derivation. (O(n))

As a basis, if n = 1 then i, j = 1 and we are given a proof of A1 ∨ A1.

A1 ∨ A1 Given
A1 Contraction

Otherwise, if i = 1, we are given a proof of A1 ∨ Aj. Then,

A1 ∨ Aj Given
A1 ∨ · · · ∨ An Multi-or expansion step

Otherwise, if j = 1, we are given a proof of Ai ∨ A1. Then,

Ai ∨ A1 Given
A1 ∨ Ai Commute or
A1 ∨ · · · ∨ An Multi-or expansion step

Finally, if i, j 6= 1, then from Ai ∨ Aj we may recursively construct a proof of

A2 ∨ · · · ∨ An. Then,

Ai ∨ Aj Given
A2 ∨ · · · ∨ An Recursive construction
A1 ∨ · · · ∨ An Expansion

Derived Rule 40. Generic subset step lemma 1

(P ∨ A) ∨ P
P ∨ A

179

Derivation. (13)

(P ∨ A) ∨ P Given
P ∨ P ∨ A Commute or
(P ∨ P) ∨ A Associativity
A ∨ P ∨ P Commute or
A ∨ P Dj. contraction
P ∨ A Commute or

Derived Rule 41. Generic subset step

(Ai ∨ Aj) ∨ A1 ∨ · · · ∨ An
A1 ∨ · · · ∨ An

Derivation. (O(n2))

(Ai ∨ Aj) ∨ A1 ∨ · · · ∨ An Given
(A1 ∨ · · · ∨ An) ∨ Ai ∨ Aj Commute or
((A1 ∨ · · · ∨ An) ∨ Ai) ∨ Aj Associativity
((A1 ∨ · · · ∨ An) ∨ Ai) ∨ A1 ∨ · · · ∨ An Multi-or exp. step
(A1 ∨ · · · ∨ An) ∨ Ai Generic subset step lm. 1
(A1 ∨ · · · ∨ An) ∨ A1 ∨ · · · ∨ An Multi-or exp. step
A1 ∨ · · · ∨ An Contraction

Derived Rule 42. Generic subset

A1 ∨ · · · ∨ An
B1 ∨ · · · ∨Bm

where {A1, . . . , An} ⊆ {B1, . . . , Bm}

Derivation. (O(n3))

Suppose n = 1. In this case, we are given a proof of A1, and we know that

{A1} ⊆ {B1, . . . , Bm}. In other words, we are given a proof of Bi for some i. Then,

Bi Given
B1 ∨ · · · ∨Bm Multi-expansion

Otherwise, suppose n = 2. Now we are given A1 ∨ A2, which is the same as

Bi ∨Bj for some i, j. Then,

180

Bi ∨Bj Given
B1 ∨ · · · ∨Bm Multi-or expansion

Finally, suppose n ≥ 3. Let C = A1∨A2. Now C∨A3∨· · ·∨An is a disjunction

of n − 1 formulas, so we may recursively prove C ∨ B1 ∨ · · · ∨ Bm from a proof of

C ∨ A3 ∨ · · · ∨ An. Then,

A1 ∨ · · · ∨ An Given
(A1 ∨ A2) ∨ (A3 ∨ · · · ∨ An) Associativity
C ∨ (A3 ∨ · · · ∨ An) Restated to introduce C
C ∨ (B1 ∨ · · · ∨Bm) Recursive construction
(A1 ∨ A2) ∨ (B1 ∨ · · · ∨Bm) Restated to remove C
B1 ∨ · · · ∨Bm Generic subset step

The generic subset rule is powerful, but it is not very efficient. In special cases,

more efficient derivations are possible. One such case is reversing a disjunction. If

our goal is to prove An∨· · ·∨A1 from a proof of A1∨· · ·∨An, we can use a derivation

which takes O(n) steps rather than O(n3).

Derived Rule 43. Revappend disjunction

(T1 ∨ · · · ∨ Tn) ∨D1 ∨ · · · ∨Dm

Tn ∨ · · · ∨ T1 ∨D1 ∨ · · · ∨Dm

Derivation. O(n)

We think of the Ti portion of the disjunction as “to do,” and the Di portion as

“done”. As a basis, if n is 0 or 1, then we have already been given the desired proof.

Otherwise, assume n ≥ 2, and consider two cases.

If m = 0, then we may recursively construct a proof of Tn ∨ · · · ∨ T2 ∨ A for

any A, given a proof of T2...n∨A (this is well-founded since the number of Ti has been

decreased). Then,

T1 ∨ T2...n Given

181

T2...n ∨ T1 Commute or
Tn ∨ · · · ∨ T1 Recursive construction, A← T1

Otherwise, if m ≥ 1, we may recursively construct a proof of Tn ∨ · · · ∨ T2 ∨

A ∨ D1...m, for any A, given a proof of T2...n ∨ A ∨ D1...m (this is well-founded since

the number of Ti has been decreased). Then,

(T1 ∨ T2...n) ∨D1...m Given
D1...m ∨ T1 ∨ T2...n Commute or
(D1...m ∨ T1) ∨ T2...n Associativity
T2...n ∨ (D1...m ∨ T1) Commute or
T2...n ∨ (T1 ∨D1...m) Disjoined commute or
Tn ∨ · · · ∨ T2 ∨ T1 ∨D1...m Recursive construction, A← T1

Derived Rule 44. Rev disjunction

A1 ∨ · · · ∨ An
An ∨ · · · ∨ A1

Derivation. (O(n))

A1 ∨ · · · ∨ An Given
An ∨ · · · ∨ A1 Revappend disjunction, D ← ∅

The rev disjunction typically builds much smaller proofs than generic subset.

As a simple empirical test, we created a one-step, axiomatic appeal which claims to

prove a1 = a1-prime ∨ · · · ∨ an = an-prime, and then instructed each function to

build a proof of the reversed disjunction, an = an-prime∨ · · · ∨ a1 = a1-prime. We

then measured the sizes of the resulting proofs with rank:

n Generic Subset Rev Disjunction Savings
1 5 5 0%
2 38 38 0%
3 1,864 771 59%
5 15,194 3,605 76%
10 176,269 18,670 89%
20 2,042,969 83,000 96%
30 8,936,569 192,930 98%

182

Another special case of the Generic Subset rule is when A1, . . . , An is an or-

dered subset of B1, . . . , Bm. In practice, this frequently arises when absurd and

duplicate literals are removed from clauses, as mentioned in Chapter 7. In this case,

we can again develop a custom derivation which often produces smaller proofs.

Derived Rule 45. Ordered subset aux

(D1 ∨ · · · ∨Dk) ∨ A1 ∨ · · · ∨ An
Bm ∨ · · · ∨B1 ∨D1 ∨ · · · ∨Dk

Where A1, . . . , An is an ordered subset of B1, . . . , Bm.

Derivation. We will assume we can recursively perform this derivation when n +

m has decreased. As a basis, if m = 0 then n = 0. Since n and k may not be

simultaneously zero, k > 0 and we have been given a proof of our goal. So, assume

m > 0. Furthermore, if n = 0, then we know k > 0, and since the empty set is an

ordered subset of B1, . . . , Bm−1, we may derive our goal as follows:

D1...k Given
Bm−1 ∨ · · · ∨B1 ∨D1...k Recursively, D ← D1...k;B ← B1...m−1;A← ∅
Bm ∨ · · · ∨B1 ∨D1...k Expansion

So, for the remainder of the derivation, assume n,m > 0. If we further suppose k = 0,

we have two cases:

A1. A1 = B1. Now, since A2, . . . , An is an ordered subset of B2, . . . , Bm,

B1 ∨ A2 ∨ · · · ∨ An Given
Bm ∨ · · · ∨B1 Recursively, D ← B1;B ← B2...m;A← A2...n

A2. A1 6= B1. Now, since A1, . . . , An is an ordered subset of B2, . . . , Bm,

A1 ∨ · · · ∨ An Given
B1 ∨ A1 ∨ · · · ∨ An Expansion
Bm ∨ · · · ∨B1 Recursively, D ← B1;B ← B2...m;A← A1...n

183

Otherwise, it must be that n,m, k > 0. We now have three cases:

B1. A1 = B1, n = 1. Now, since the empty set is an ordered subset of B2, . . . , Bm,

D1...k ∨B1 Given
B1 ∨D1...k Commute or
Bm ∨ · · · ∨B1 ∨D1...k Recursively, D ← B1, D1...k;B ← B2...m;A← ∅

B2. A1 = B1, n > 1. Now, since A2, . . . , An is an ordered subset of B2, . . . , Bm,

D1...k ∨B1 ∨ A2...n Given
D1...k ∨ A2...n ∨B1 Disjoined commute or
(D1...k ∨ A2...n) ∨B1 Associativity
B1 ∨D1...k ∨ A2...n Commute or
(B1 ∨D1...k) ∨ A2...n Associativity
Bm ∨ · · · ∨B1 ∨D1...k Recursively, D ← B1, D1...k;B ← B2...m;A← A2...n

B3. A1 6= B1. Now, since A1, . . . , An is an ordered subset of B2, . . . , Bm,

D1...k ∨ A1...n Given
B1 ∨D1...k ∨ A1...n Expansion
(B1 ∨D1...k) ∨ A1...n Associativity
Bm ∨ · · · ∨B1 ∨D1...k Recursively, D ← B1, D1...k;B ← B2...m;A← A1...n

Derived Rule 46. Ordered subset

A1 ∨ · · · ∨ An
B1 ∨ · · · ∨Bm

, where A1, . . . , An is an ordered subset of B1, . . . , Bm.

Derivation.

A1 ∨ · · · ∨ An Given
Bm ∨ · · · ∨B1 Ordered subset aux, D ← ∅;B ← B1...m;A← A1...n
B1 ∨ · · · ∨Bm Rev disjunction

The ordered subset approach does not always outperform generic subset, but

it does well when the sets involved are large. As a simple empirical test, we let Ai be

the formula ai = ai-prime, Bi be bi = bi-prime, and Ci be ci = ci-prime. Then,

184

beginning with a one-step, axiomatic appeal that concludes

A1 ∨ · · · ∨ An,

we instructed each builder to prove

C1 ∨ A1 ∨B1 ∨ · · · ∨ Cn ∨ An ∨Bn,

and measured the size of the resulting proofs with rank.

n Generic Subset Ordered Subset Savings
1 64 818 Lose
2 523 6,626 Lose
3 8,557 17,378 Lose
4 25,380 33,074 Lose
5 53,714 55,555 Lose
6 103,552 79,298 23%
10 579,540 231,074 60%
15 2,306,725 532,034 77%
20 6,263,860 956,594 85%

After implementing these derivations as functions, it is straightforward to de-

velop an “adaptive” function, which we call Disjoined Subset, that tries to construct

whichever derivation seems likely to be the shortest.

– First, we determine if the subset, A1, . . . , An, is identical to the superset, in

which case we can just reuse the input proof.

– Next, we check if the subset is the reverse of the superset, in which case we use

rev disjunction, since it is a particularly efficient rule.

– Next, we see if we have an ordered subset. If this is the case, and heuristically

the subset is at least of length 5 and the superset of length 10, we try the ordered

subset builder, since it tends to be more efficient when the sets are larger.

– Otherwise, we use the generic subset builder.

185

5.6 Tautologies

Following the work of Shoenfield [83] and Shankar [82], we now introduce a

rule which can be used to derive any propositional tautology. We regard equality

formulas as atomic propositions and call them atoms. A truth valuation, v, assigns to

every atom, A, a truth value, Av. We extend truth valuations to arbitrary formulas

by defining

(¬F)v = not F v, and

(F ∨G)v = F v or Gv.

A tautology is a formula whose every truth valuation is true. This notion of

tautology is blind to the meaning of particular atoms, so formulas such as x = x will

not be thought of as tautologies even though they are true under every interpretation.

Instead, these tautologies are formulas such as A ∨ ¬A.

A basic formula is an atom or its negation. Given a basic formula, A, we

define the complement of A, written A, as follows: if A is an atom, then A is ¬A;

otherwise A is the formula ¬B for some atom B, and A is B. If a formula and its

complement are both among a list of basic formulas, F1, . . . , Fn, then the disjunction

F1 ∨ · · · ∨ Fn is a tautology. On the other hand, if F1, . . . , Fn is complement-free,

then the truth valuation v, which assigns Av to true exactly when A = Fi for some i,

renders (F1 ∨ · · · ∨ Fn)v false.

We now describe the tautology-checking algorithm. Given a list of formulas,

T1, . . . , Tn, and a complement-free list of basic formulas, D1, . . . , Dm, TC (T1...n, D1...m)

determines whether T1∨· · ·∨Tn∨D1∨· · ·∨Dm is a tautology. To determine whether

a particular formula, F , is a tautology, we can then simply run TC ([F], []).

In this algorithm, the formulas Ti are considered “to do” while the formulas Di

are considered “done”. At each step, we work toward converting T1 into an equivalent

186

disjunction of basic formulas, which we then move into the done list. If at any point

the complement of some Di is generated, then the formula T1∨· · ·∨Tn∨D1∨· · ·∨Dm

is a tautology; otherwise, if we run out of Ti without finding any complements, it is

not a tautology.

TC ([], D1...m) , false

TC ([x1 = x2, T2...n], D1...m) , x1 6= x2 ∈ D1...m or TC (T2...n, [x1 = x2, D1...m])

TC ([x1 6= x2, T2...n], D1...m) , x1 = x2 ∈ D1...m or TC (T2...n, [x1 6= x2, D1...m])

TC ([¬¬A, T2...n], D1...m) , TC ([A, T2...n], D1...m)

TC ([¬(A ∨B), T2...n], D1...m) , TC ([¬A, T2...n], D1...m) and TC ([¬B, T2...n], D1...m)

TC ([A ∨B, T2...n], D1...m) , TC ([A,B, T2...n], D1...m)

The termination of TC is justified by the measure∑i=1...n size(Ti), where the size of a

formula F , size(F), be defined as follows. If F is an atomic formula, then size(F) =

1. Meanwhile, size(¬G) = 1 + size(G) and size(G ∨H) = 1 + size(G) + size(H).

The following theorem establishes that TC is correct with respect to our notion

of tautologies.

Theorem 5.1. If TC (T1...n, D1...m), then T1 ∨ · · · ∨Tn ∨D1 ∨ · · · ∨Dm is a tautology.

Proof. The proof is by induction according to the recursive definition of TC . As a

basis, if n is zero, then TC (T1...n, D1...m) is false and there is nothing to show.

If T1 is the equality x1 = x2, there are two cases. First, if x1 6= x2 ∈ D1...m,

then our goal formula, T1 ∨ · · · ∨ Tn ∨ D1 ∨ · · · ∨ Dm, contains both x1 = x2 and

x1 6= x2. So, since any truth valuation v must assign one of these formulas to true,

we see that (T1 ∨ · · · ∨ Tn ∨D1 ∨ · · · ∨Dm)v is true for all valuations, and hence is a

tautology. Otherwise, if x1 6= x2 /∈ D1...m, we may inductively assume that T2 ∨ · · · ∨

187

Tn∨T1∨D1∨· · ·∨Dm is a tautology. But then, trivially, T1∨· · ·∨Tn∨D1∨· · ·∨Dm

is also a tautology.

If T1 is x1 6= x2, the proof is nearly identical to the above, so we omit it.

If T1 is ¬¬A, we may inductively assume that A∨T2∨· · ·∨Tn∨D1∨· · ·∨Dm

is a tautology. But (¬¬A)v = Av, so trivially T1 ∨ · · · ∨ Tn ∨D1 ∨ · · · ∨Dm is also a

tautology.

If T1 is ¬(A∨B), let P be the formula T2 ∨ · · · ∨ Tn ∨D1 ∨ · · · ∨Dm. We may

inductively assume that ¬A∨ P and ¬B ∨ P are both tautologies, and our goal is to

show ¬(A ∨ B) ∨ P is a tautology. Let v be an arbitrary truth valuation so we only

need to show (¬(A ∨ B) ∨ P)v is true. This is trivial when P v is true, so assume P v

is false; now we need to show (¬(A ∨ B))v is true. Since ¬A ∨ P and ¬B ∨ P are

tautologies, (¬A∨P)v and (¬B ∨P)v must be true, so (¬A)v and (¬B)v are true, so

Av and Bv are false, so (A ∨B)v is false, so ¬(A ∨B)v is true, which was our goal.

Finally, if T1 is A ∨ B, then we may inductively assume (A ∨ B) ∨ T2 ∨ · · · ∨

Tn ∨ D1 ∨ · · · ∨ Dm is a tautology. Then, trivially, T1 ∨ · · · ∨ Tn ∨ D1 ∨ · · · ∨ Dm is

also a tautology.

Furthermore, we can explain how to derive a formal proof in our logic of any

formula accepted by TC .

Derived Rule 47. Tautology lemma

T1 ∨ · · · ∨ Tn ∨D1 ∨ · · · ∨Dm
, where TC(T1...n, D1...m) is true.

Derivation. Since TC (T1...n, D1...m), n > 0, so consider cases on T1.

1. T1 is x1 = x2. If ¬T1 ∈ D1...m, let Di be ¬T1. Now,

Di ∨ T1 Propositional schema
T1 ∨ · · · ∨ Tn ∨D1 ∨ · · · ∨Dm Multi-or expansion

188

Otherwise, TC (T2...n, [T1, D1...m]) is true, so T2 ∨ · · · ∨ Tn ∨ T1 ∨D1...m may be

recursively derived. Our goal then follows by the generic subset rule.

2. T1 is x1 6= x2. If (x1 = x2) ∈ D1...m, let Di be x1 = x2. Now,

Ti ∨Di Propositional schema
T1 ∨ · · · ∨ Tn ∨D1 ∨ · · · ∨Dm Multi-or expansion

Otherwise, TC (T2...n, [T1, D1...m]) is true, so T2 ∨ · · · ∨ Tn ∨ T1 ∨D1...m may be

recursively derived. As before, our goal follows from the generic subset rule.

3. T1 is ¬¬A. Now TC ([A, T2...n], D1...m) is true. If n = 1 and m = 0, then we

may recursively derive A. Now, our goal is ¬¬A, which may be derived with

the insert ¬¬ rule. Otherwise, we may recursively derive A ∨ T2 ∨ · · · ∨ Tn ∨

D1 ∨ · · · ∨Dm, and our goal follows from the lhs insert ¬¬ rule.

4. T1 is ¬(A ∨ B). Now, TC ([¬A, T2...n], D1...m) and TC ([¬B, T2...n], D1...m) are

both true. If n = 1 and m = 0, then we may recursively derive ¬A and ¬B,

and our goal, ¬(A ∨ B), follows from the merge negatives rule. Otherwise, we

may recursively derive ¬A∨T2∨· · ·∨Tn∨D1...m and ¬B∨T2∨· · ·∨Tn∨D1...m,

and our goal follows from the merge implications rule.

5. T1 is A∨B. Now, TC ([A,B, T2...n], D1...m) is true. If n = 1 and m = 0, then we

may recursively derive A∨B, which is our goal. Otherwise, we may recursively

derive A∨B ∨T2 ∨ · · · ∨Tn ∨D1...m, and by the associativity rule we obtain our

goal.

Derived Rule 48. Tautology

A
, where TC([A], []) is true

189

Derivation. This is a trivial consequence of the tautology lemma, setting T ← [A]

and D ← ∅.

5.7 Equivalence Substitution

In this section we develop an equivalence substitution rule. This again fol-

lows Shoenfield’s [83] original presentation and Shankar’s [82] implementation for his

system, except that we optimize the derivation to emit smaller proofs.

To begin, the logical connectives for implication, conjunction, and equivalence

can be introduced as abbreviations for other formulas.

Abbreviation Meaning
A→ B ¬A ∨B
A ∧B ¬(¬A ∨ ¬B)
A↔ B (A→ B) ∧ (B → A)

Given these abbreviations, we can develop some simple rules for working with con-

junctions.

Derived Rule 49. First conjunct

¬(¬A ∨ ¬B)
A

Derivation. (13)

¬A ∨ A Prop. schema
A ∨ ¬A Commute or
¬B ∨ A ∨ ¬A Expansion
(¬B ∨ A) ∨ ¬A Associativity
¬A ∨ ¬B ∨ A Commute or
(¬A ∨ ¬B) ∨ A Associativity
¬(¬A ∨ ¬B) Given
A Modus ponens 2

190

Derived Rule 50. Second conjunct

¬(¬A ∨ ¬B)
B

Derivation. (8)

¬B ∨ B Prop. schema
¬A ∨ ¬B ∨ B Expansion
(¬A ∨ ¬B) ∨ B Associativity
¬(¬A ∨ ¬B) Given
B Modus ponens 2

Derived Rule 51. Conjoin
A
B
¬(¬A ∨ ¬B)

Derivation. (16)

¬(¬A ∨ ¬B) ∨ ¬A ∨ ¬B Prop. schema
(¬(¬A ∨ ¬B) ∨ ¬A) ∨ ¬B Associativity
¬B ∨ ¬(¬A ∨ ¬B) ∨ ¬A Commute or
B Given
¬(¬A ∨ ¬B) ∨ ¬A Modus ponens
¬A ∨ ¬(¬A ∨ ¬B) Commute or
A Given
¬(¬A ∨ ¬B) Modus ponens

Informally, the equivalence substitution rule is the following. Let G be ob-

tained from F by replacing some occurrences of Ai with Ai
′, respectively. Then,

given proofs of A1 ↔ A1
′, . . . , and An ↔ An

′, we may derive F ↔ G. More pre-

cisely, given formulas F and G, and a list of equivalence formulas, equivs = [A1 ↔

A1
′, . . . , An ↔ An

′], we define es(F,G, equivs) to return true when the rule may be

191

applied, and false otherwise. In particular, we begin with

es(F, F, equivs) , true,

es(F,G, [..., F ↔ G, ...]) , true,

otherwise, as special cases, we have

es(¬A,¬B, equivs) , es(A,B, equivs),

es(A ∨B,C ∨D, equivs) , es(A,C, equivs) and es(B,D, equivs),

and otherwise, es(F,G, equivs) is false.

Derived Rule 52. Equivalence substitution

A1 ↔ A1
′

...
An ↔ An

′

F ↔ G

where es(F,G, [A1 ↔ A1
′, . . . , An ↔ An

′]) is true

Derivation. Let equivs be [A1 ↔ A1
′, . . . , An ↔ An

′], and consider the cases where

es(F,G, equivs) is true.

1. Suppose F = G. Then our goal is F ↔ F . But F → F is just ¬F ∨ F , so we

have:

F → F Propositional schema
F ↔ F Conjoin (the above with itself)

2. Suppose F ↔ G occurs in equivs. Now, one of our premises is F ↔ G, so we

have been given a proof of our goal.

3. Suppose F = ¬A, G = ¬B, and es(A,B, equivs) is true. We may recursively

derive A↔ B. Now, to derive our goal,

192

A→ B ∧B → A Recursive construction (*1)
¬B ∨ A Second conjunct
A ∨ ¬B Commute or
¬A→ ¬B Lhs insert ¬¬ (*2)
¬A ∨B First conjunct *1
B ∨ ¬A Commute or
¬B → ¬A Lhs insert ¬¬
¬A↔ ¬B Conjoin *2

4. Suppose F = A ∨ B, G = C ∨D, es(A,C, equivs) is true, and es(B,D, equivs)

is true. We may recursively derive A ↔ B and C ↔ D. Now, to derive our

goal, A ∨B ↔ C ∨D,

A→ C ∧ C → A Recursive construction (*1)
B → D ∧D → B Recursive construction (*2)
A→ C First conjunct *1
A→ (C ∨D) Disjoined right expansion
B → D First conjunct *2
B → (C ∨D) Disjoined left expansion
(A ∨B)→ (C ∨D) Merge implications (*3)
C → A Second conjunct *1
C → (A ∨B) Disjoined right expansion
D → B Second conjunct *2
D → (A ∨B) Disjoined left expansion
(C ∨D)→ (A ∨B) Merge implications
(A ∨B)↔ (C ∨D) Conjoin *3

193

Chapter 6

Equality

The tools developed in the last chapter are a good start toward making our

proof-checking system usable, but propositional reasoning alone is insufficient to prove

even simple formulas such as t = t. In this chapter, we develop additional derived

rules which allow us to carry out equality reasoning.

6.1 Simple Derivations

We begin with some simple rules of inference which allow us to manipulate

equality formulas. First, we have two completely trivial rules for instantiating the

reflexivity and equality axioms with our choice of terms.

Derived Rule 53. Reflexivity

a = a

Derivation. (2)

x = x Axiom reflexivity
a = a Instantiation

Derived Rule 54. Equality

a1 6= b1 ∨ a2 6= b2 ∨ a1 6= a2 ∨ b1 = b2

Derivation. (2)

194

x1 6= y1 ∨ x2 6= y2 ∨ x1 6= x2 ∨ y1 = y2 Axiom equality
a1 6= b1 ∨ a2 6= b2 ∨ a1 6= a2 ∨ b1 = b2 Instantiation

Unlike the derivations in Chapter 5, these rules make use of axioms. In our

ACL2 proof plan, we account for this by constraining the axioms in the faithfulness

theorem. For instance, to show the faithfulness of build.reflexivity—the function

that implements our reflexivity rule—we begin by introducing a zero-ary function,

axiom-reflexivity, which simply returns (pequal* x x). We use a zero-ary func-

tion, rather than writing the formula explicitly, so that we can disable the function in

later proofs. Then, in the faithfulness theorem for build.reflexivity, we require

that this formula is among the axioms given to logic.proofp, as follows.

ACL2 Code
(defthm logic.proofp-of-build.reflexivity

(implies (and (logic.termp a)
(logic.term-atblp a atbl)
(memberp (axiom-reflexivity) axioms))

(logic.proofp (build.reflexivity a) axioms thms atbl)))

To have our functions emit shorter derivations, a standard trick is to prove a

theorem ahead of time which, combined with instantiation and modus ponens, will

provide the desired manipulation. This way, even if the proof of this theorem is quite

long, derivations which make use of the theorem can be short. Our first example of

this is in commuting equalities. We first prove the theorem x = y → y = x. Our

proof of this theorem takes thirty-one primitive steps, but this is a one-time cost and,

afterward, instantiating the theorem to derive b = a from a = b takes only seven

steps.

Formal Theorem 1. Commutativity of =

x 6= y ∨ y = x

195

Proof.

x = x Reflexivity
x 6= y ∨ x = x Expansion (*1)
x 6= y ∨ x 6= x ∨ x 6= x ∨ y = x Equality
x 6= y ∨ x 6= x ∨ y = x Dj. mp *1
x 6= y ∨ y = x Dj. mp *1

Derived Rule 55. Commute =
a = b
b = a

Derivation. (7)

x 6= y ∨ y = x Th. comm. =
a 6= b ∨ b = a Instantiation
a = b Given
b = a Modus ponens

Of course, the proofs emitted by commute = will only be valid in histories

where the theorem has been previously admitted. In our ACL2 proofs of faithful-

ness, we handle this much like we handled axioms. First, we write a zero-ary func-

tion, theorem-commutativity-of-pequal, that returns the formula x 6= y ∨ y = x.

Then, in the faithfulness theorem for build.commute-pequal—our function that im-

plements the commute = rule—we require that this theorem be among the theorems

given to logic.proofp, as follows.

ACL2 Code
(defthm logic.proofp-of-build.commute-pequal

(implies (and (logic.appealp x)
(logic.proofp x axioms thms atbl)
(equal (logic.fmtype (logic.conclusion x)) ’pequal*)
(memberp (theorem-commutativity-of-pequal) thms))

(logic.proofp (build.commute-pequal x)

196

axioms thms atbl)))

Theorems can also be useful in disjoined rules. The pattern here is to instan-

tiate the theorem, expand it with the extra disjunct, and then use disjoined modus

ponens to obtain the goal.

Derived Rule 56. Disjoined commute =
P ∨ a = b
P ∨ b = a

Derivation. (17)

x 6= y ∨ y = x Th. comm. =
a 6= b ∨ b = a Instantiation
P ∨ a 6= b ∨ b = a Expansion
P ∨ a = b Given
P ∨ b = a Dj. modus ponens

Now, without much further commentary, we present a number of rules that

make use of these techniques.

Derived Rule 57. Commute 6=
a 6= b
b 6= a

Derivation. (9)

x 6= y ∨ y = x Th. comm. =
y = x ∨ x 6= y Commute or
a = b ∨ b 6= a Instantiation
a 6= b Given
b 6= a Modus ponens 2

197

Derived Rule 58. Disjoined commute 6=
P ∨ a 6= b
P ∨ b 6= a

Derivation. (19)

x 6= y ∨ y = x Th. comm. =
y = x ∨ x 6= y Commute or
a = b ∨ b 6= a Instantiation
P ∨ a = b ∨ b 6= a Expansion
P ∨ a 6= b Given
P ∨ b 6= a Dj. mp2

Formal Theorem 2. Substitute into 6=

x = y ∨ z 6= x ∨ z 6= y

Proof.

y = y Reflexivity
z 6= x ∨ y = y Expansion
z 6= x ∨ y 6= y ∨ z 6= y ∨ x = y Equality
z 6= x ∨ z 6= y ∨ x = y Dj. modus ponens
(z 6= x ∨ z 6= y) ∨ x = y Associativity
x = y ∨ z 6= x ∨ z 6= y Commute or

Derived Rule 59. Substitute into 6=
a 6= b
c = a
c 6= b

Derivation. (12)

x = y ∨ z 6= x ∨ z 6= y Th. sub. into 6=
a = b ∨ c 6= a ∨ c 6= b Instantiation
a 6= b Given
c 6= a ∨ c 6= b Modus ponens 2
c = a Given

198

c 6= b Modus ponens

Derived Rule 60. Disjoined substitute into 6= lemma 1

P ∨ a 6= b
P ∨ c 6= a ∨ c 6= b

Derivation. (17)

x = y ∨ z 6= x ∨ z 6= y Th. sub. into 6=
a = b ∨ c 6= a ∨ c 6= b Instantiation
P ∨ a = b ∨ c 6= a ∨ c 6= b Expansion
P ∨ a 6= b Given
P ∨ c 6= a ∨ c 6= b Dj. mp2

Derived Rule 61. Disjoined substitute into 6=
P ∨ a 6= b
P ∨ c = a
P ∨ c 6= b

Derivation. (31)

P ∨ c 6= a ∨ c 6= b Dj. sub. into 6= lm. 1
P ∨ c = a Given
P ∨ c 6= b Dj. modus ponens

Formal Theorem 3. Transitivity of =

x 6= y ∨ y 6= z ∨ x = z

Proof.

x 6= y ∨ y = x Th. comm. =
x 6= y ∨ y 6= z ∨ y = x Dj. left expansion
(x 6= y ∨ y 6= z) ∨ y = x Associativity (*1)
y 6= z ∨ y = z Prop. schema
x 6= y ∨ y 6= z ∨ y = z Expansion

199

(x 6= y ∨ y 6= z) ∨ y = z Associativity (*2)
y = y Reflexivity
(x 6= y ∨ y 6= z) ∨ y = y Expansion (*3)
y 6= x ∨ y 6= z ∨ y 6= y ∨ x = z Equality
(x 6= y ∨ y 6= z) ∨ y 6= x ∨ y 6= z ∨ y 6= y ∨ x = z Expansion
(x 6= y ∨ y 6= z) ∨ y 6= z ∨ y 6= y ∨ x = z Dj. mp *1
(x 6= y ∨ y 6= z) ∨ y 6= y ∨ x = z Dj. mp *2
(x 6= y ∨ y 6= z) ∨ x = z Dj. mp *3
x 6= y ∨ y 6= z ∨ x = z Right assoc.

Derived Rule 62. Transitivity of =
a = b
b = c
a = c

Derivation. (12)

x 6= y ∨ y 6= z ∨ x = z Th. trans. =
a 6= b ∨ b 6= c ∨ a = c Instantiation
a = b Given
b 6= c ∨ a = c Modus ponens
b = c Given
a = c Modus ponens

Derived Rule 63. Disjoined transitivity of =
P ∨ a = b
P ∨ b = c
P ∨ a = c

Derivation. (31)

x 6= y ∨ y 6= z ∨ x = z Th. trans. =
a 6= b ∨ b 6= c ∨ a = c Instantiation
P ∨ a 6= b ∨ b 6= c ∨ a = c Expansion
P ∨ a = b Given
P ∨ b 6= c ∨ a = c Dj. modus ponens
P ∨ b = c Given
P ∨ a = c Dj. modus ponens

200

Formal Theorem 4. Not t or not nil

x 6= t ∨ x 6= nil

Proof.

t 6= nil Axiom t not nil
x 6= t ∨ t 6= nil Expansion
x 6= t ∨ x = t Prop. schema
x 6= t ∨ x 6= nil Dj. sub. into 6=

Derived Rule 64. Not nil from t

a = t
a 6= nil

Derivation. (7)

x 6= t ∨ x 6= nil Th. not t or nnil
a 6= t ∨ a 6= nil Instantiation
a = t Given
a 6= nil Modus ponens

Derived Rule 65. Disjoined not nil from t

P ∨ a = t
P ∨ a 6= nil

Derivation. (17)

x 6= t ∨ x 6= nil Th. not t or nnil
a 6= t ∨ a 6= nil Instantiation
P ∨ a 6= t ∨ a 6= nil Expansion
P ∨ a = t Given
P ∨ a 6= nil Dj. modus ponens

201

Derived Rule 66. Not t from nil

a = nil
a 6= t

Derivation. (9)

x 6= t ∨ x 6= nil Th. not t or nnil
x 6= nil ∨ x 6= t Commute or
a 6= nil ∨ a 6= t Instantiation
a = nil Given
a 6= t Modus ponens

Derived Rule 67. Disjoined not t from nil

P ∨ a = nil
P ∨ a 6= t

Derivation. (19)

x 6= t ∨ x 6= nil Th. not t or nnil
x 6= nil ∨ x 6= t Commute or
a 6= nil ∨ a 6= t Instantiation
P ∨ a 6= nil ∨ a 6= t Expansion
P ∨ a = nil Given
P ∨ a 6= t Dj. modus ponens

6.2 Term-Level Equality

The primitive function equal provides a term-level version of the formula-level

pequal*. We now derive many simple rules for working with the equal function. We

begin with reflexivity.

Formal Theorem 5. Reflexivity of equal

(equal x x) = t

202

Proof.

x 6= y ∨ (equal x y) = t Ax. eq., same
x 6= x ∨ (equal x x) = t Instantiation
x = x Reflexivity
(equal x x) = t Modus ponens

Derived Rule 68. Equal reflexivity

(equal a a) = t

Derivation. (2)

(equal x x) = t Th. refl. equal
(equal a a) = t Instantiation

This is the first derived rule we have introduced which mentions a particular

function. When we use the Milawa proof checker, we know the arity of equal will

always be two since it is part of the initial history and no event can change the

arity of an existing function. But this knowledge is not part of the definition of

logic.proofp, which requires that the formulas involved in proofs are well-formed

with respect to an arity table. In our ACL2 proof of faithfulness, we account for this

by constraining the arity of equal, as follows.

ACL2 Code
(defthm logic.proofp-of-build.equal-reflexivity

(implies (and (logic.termp a)
(logic.term-atblp a atbl)
(equal (cdr (lookup ’equal atbl)) 2)
(memberp (theorem-reflexivity-of-equal) thms))

(logic.proofp (build.equal-reflexivity a)
axioms thms atbl)))

203

Since equal always returns t or nil, it is useful to have some rules that

capture its Boolean nature.

Formal Theorem 6. Equal nil or t

(equal x y) = nil ∨ (equal x y) = t

Proof.

x = y ∨ (equal x y) = nil Ax. eq. when diff
x 6= y ∨ (equal x y) = t Ax. eq., same
(equal x y) = nil ∨ (equal x y) = t Cut

Derived Rule 69. Equal t from not nil

(equal a b) 6= nil
(equal a b) = t

Derivation. (7)

(equal x y) = nil ∨ (equal x y) = t Th. equal nil or t
(equal a b) = nil ∨ (equal a b) = t Instantiation
(equal a b) 6= nil Given
(equal a b) = t Modus ponens 2

Derived Rule 70. Disjoined equal t from not nil

P ∨ (equal a b) 6= nil
P ∨ (equal a b) = t

Derivation. (17)

(equal x y) = nil ∨ (equal x y) = t Th. equal nil or t
(equal a b) = nil ∨ (equal a b) = t Instantiation
P ∨ (equal a b) = nil ∨ (equal a b) = t Expansion
P ∨ (equal a b) 6= nil Given
P ∨ (equal a b) = t Dj. mp2

204

Derived Rule 71. Equal nil from not t

(equal a b) 6= t
(equal a b) = nil

Derivation. (9)

(equal x y) = nil ∨ (equal x y) = t Th. equal nil or t
(equal x y) = t ∨ (equal x y) = nil Commute or
(equal a b) = t ∨ (equal a b) = nil Instantiation
(equal a b) 6= t Given
(equal a b) = nil Modus ponens 2

Derived Rule 72. Disjoined equal nil from not t

P ∨ (equal a b) 6= t
P ∨ (equal a b) = nil

Derivation. (19)

(equal x y) = nil ∨ (equal x y) = t Th. equal nil or t
(equal x y) = t ∨ (equal x y) = nil Commute or
(equal a b) = t ∨ (equal a b) = nil Instantiation
P ∨ (equal a b) = t ∨ (equal a b) = nil Expansion
P ∨ (equal a b) 6= t Given
P ∨ (equal a b) = nil Dj. mp2

It is also convenient to have rules which allow us to move from equal to

pequal*, and vice-versa.

Derived Rule 73. Equal from =
a = b
(equal a b) = t

Derivation. (7)

x 6= y ∨ (equal x y) = t Ax. eq., same
a 6= b ∨ (equal a b) = t Instantiation
a = b Given

205

(equal a b) = t Modus ponens

Derived Rule 74. Disjoined equal from =
P ∨ a = b
P ∨ (equal a b) = t

Derivation. (17)

x 6= y ∨ (equal x y) = t Ax. eq., same
a 6= b ∨ (equal a b) = t Instantiation
P ∨ a 6= b ∨ (equal a b) = t Expansion
P ∨ a = b Given
P ∨ (equal a b) = t Dj. modus ponens

Derived Rule 75. = from equal

(equal a b) = t
a = b

Derivation. (16)

x = y ∨ (equal x y) = nil Ax. eq. when diff
(equal x y) = nil ∨ x = y Commute or
(equal a b) = nil ∨ a = b Instantiation (*1)
(equal a b) = t Given
(equal a b) 6= nil Not nil from t
a = b Mp2 *1

Derived Rule 76. Disjoined = from equal

P ∨ (equal a b) = t
P ∨ a = b

Derivation. (36)

x = y ∨ (equal x y) = nil Ax. eq. when diff
(equal x y) = nil ∨ x = y Commute or

206

(equal a b) = nil ∨ a = b Instantiation
P ∨ (equal a b) = nil ∨ a = b Expansion (*1)
P ∨ (equal a b) = t Given
P ∨ (equal a b) 6= nil Dj. not nil from t
P ∨ a = b Dj. mp2 *1

Derived Rule 77. Not equal from 6=
a 6= b
(equal a b) = nil

Derivation. (7)

x = y ∨ (equal x y) = nil Ax. eq. when diff
a = b ∨ (equal a b) = nil Instantiation
a 6= b Given
(equal a b) = nil Modus ponens 2

Derived Rule 78. Disjoined not equal from 6=
P ∨ a 6= b
P ∨ (equal a b) = nil

Derivation. (17)

x = y ∨ (equal x y) = nil Ax. eq. when diff
a = b ∨ (equal a b) = nil Instantiation
P ∨ a = b ∨ (equal a b) = nil Expansion
P ∨ a 6= b Given
P ∨ (equal a b) = nil Dj. mp2

Derived Rule 79. 6= from not equal

(equal a b) = nil
a 6= b

Derivation. (18)

x 6= y ∨ (equal x y) = t Ax. eq., same

207

(equal x y) = t ∨ x 6= y Commute or
(equal a b) = t ∨ a 6= b Instantiation (*1)
(equal a b) = nil Given
(equal a b) 6= t Not t from nil
a 6= b Mp2 *1

Derived Rule 80. Disjoined 6= from not equal

P ∨ (equal a b) = nil
P ∨ a 6= b

Derivation. (38)

x 6= y ∨ (equal x y) = t Ax. eq., same
(equal x y) = t ∨ x 6= y Commute or
(equal a b) = t ∨ a 6= b Instantiation
P ∨ (equal a b) = t ∨ a 6= b Expansion (*1)
P ∨ (equal a b) = nil Given
P ∨ (equal a b) 6= t Dj. not t from nil
P ∨ a 6= b Dj. mp2 *1

We have already addressed the reflexivity of equal. Now we develop some

rules about its commutativity and transitivity.

Formal Theorem 7. Symmetry of equal

(equal x y) = (equal y x)

Proof.

x = y ∨ (equal x y) = nil Ax. eq. when diff (*1)
y = x ∨ (equal y x) = nil Instantiation
y = x ∨ nil = (equal y x) Dj. commute =
nil = (equal y x) ∨ y = x Commute or
nil = (equal y x) ∨ x = y Dj. commute =
x = y ∨ nil = (equal y x) Commute or
x = y ∨ (equal x y) = (equal y x) Dj. trans. = *1 (*2)
x 6= y ∨ (equal x y) = t Ax. eq., same (*3)
y 6= x ∨ (equal y x) = t Instantiation

208

y 6= x ∨ t = (equal y x) Dj. commute =
t = (equal y x) ∨ y 6= x Commute or
t = (equal y x) ∨ x 6= y Dj. commute 6=
x 6= y ∨ t = (equal y x) Commute or
x 6= y ∨ (equal x y) = (equal y x) Dj. trans. = *3 (*4)
(equal x y) = (equal y x)

∨ (equal x y) = (equal y x)
Cut *2, *4

(equal x y) = (equal y x) Contraction

Derived Rule 81. Commute equal

(equal a b) = t
(equal b a) = t

Derivation. (14)

(equal x y) = (equal y x) Th. symmetry of eq.
(equal b a) = (equal a b) Instantiation
(equal a b) = t Given
(equal b a) = t Trans. =

Derived Rule 82. Disjoined commute equal

P ∨ (equal a b) = t
P ∨ (equal b a) = t

Derivation. (34)

(equal x y) = (equal y x) Th. symmetry of eq.
(equal b a) = (equal a b) Instantiation
P ∨ (equal b a) = (equal a b) Expansion
P ∨ (equal a b) = t Given
P ∨ (equal b a) = t Dj. trans. =

Formal Theorem 8. Transitivity of equal

(equal x y) 6= t ∨ (equal y z) 6= t ∨ (equal x z) = t

209

Proof.

x = y ∨ (equal x y) = nil Ax. eq. when diff
x = y ∨ (equal x y) 6= t Dj. not t from nil (*1)
(equal y z) 6= t ∨ x = y ∨ (equal x y) 6= t Expansion
((equal y z) 6= t ∨ x = y) ∨ (equal x y) 6= t Associativity
(equal x y) 6= t ∨ (equal y z) 6= t ∨ x = y Commute or
((equal x y) 6= t ∨ (equal y z) 6= t) ∨ x = y Associativity (*2)
y = z ∨ (equal y z) 6= t Instantiation *1
(equal y z) 6= t ∨ y = z Commute or
(equal x y) 6= t ∨ (equal y z) 6= t ∨ y = z Expansion
((equal x y) 6= t ∨ (equal y z) 6= t) ∨ y = z Associativity
((equal x y) 6= t ∨ (equal y z) 6= t) ∨ x = z Dj. trans. = *2 (*3)
((equal x y) 6= t ∨ (equal y z) 6= t)

∨ (equal x z) = t
Dj. eq. from =

(equal x y) 6= t
∨ (equal y z) 6= t ∨ (equal x z) = t

Right assoc.

Derived Rule 83. Transitivity of equal
(equal a b) = t
(equal b c) = t
(equal a c) = t

Derivation. (12)

(equal x y) 6= t
∨ (equal y z) 6= t ∨ (equal x z) = t

Th. trans. equal

(equal a b) 6= t
∨ (equal b c) 6= t ∨ (equal a c) = t

Instantiation

(equal a b) = t Given
(equal b c) 6= t ∨ (equal a c) = t Modus ponens
(equal b c) = t Given
(equal a c) = t Modus ponens

Derived Rule 84. Disjoined transitivity of equal
P ∨ (equal a b) = t
P ∨ (equal b c) = t
P ∨ (equal a c) = t

Derivation. (31)

210

(equal x y) 6= t
∨ (equal y z) 6= t ∨ (equal x z) = t

Th. trans. equal

(equal a b) 6= t
∨ (equal b c) 6= t ∨ (equal a c) = t

Instantiation

P ∨ (equal a b) 6= t
∨ (equal b c) 6= t ∨ (equal a c) = t

Expansion

P ∨ (equal a b) = t Given
P ∨ (equal b c) 6= t ∨ (equal a c) = t Dj. modus ponens
P ∨ (equal b c) = t Given
P ∨ (equal a c) = t Dj. modus ponens

It is easy enough to prove that a constant is equal to itself: if we want to

prove (pequal* c c), we can simply use the reflexivity rule, and if we want to prove

(equal c c) = t, we can use equal reflexivity. But if c1 and c2 are different constants,

how can we prove they are not equal? Since equal is one of our primitive functions,

we can do this with the base evaluation rule.

Derived Rule 85. 6= constants

c1 6= c2
, when c1 and c2 are distinct constants

Derivation. (19)

(equal c1 c2) = nil Base eval
c1 6= c2 6= from not equal

6.3 Equality Substitution

Rules such as substitute into 6= and transitivity of = give us a mechanism

for performing equality substitution on “whole terms.” We now develop some more

general rules which allow us to substitute equalities into subterms.

To begin with, we develop some particularly useful rules which allow us to

211

substitute equal terms into the arguments of function applications and lambda ab-

breviations. For function applications, this is entirely straightforward.

Derived Rule 86. = by arguments
t1 = s1
...
tn = sn
(f t1 . . . tn) = (f s1 . . . sn)

Derivation. By the functional equality rule, we may derive

t1 = s1 → · · · → tn = sn → (f t1 . . . tn) = (f s1 . . . sn).

Then, since we are given proofs of t1 = s1, . . . , tn = sn, by modus ponens list, we may

obtain our goal, (f t1 . . . tn) = (f s1 . . . sn).

Argument substitution in lambda abbreviations is more difficult. Our basic

approach is to β-reduce the lambda under each set of arguments, then show the

resulting terms are equal. This second part is done with the dual substitution rule,

but before we present this rule we need to mention a property of substitution.

Theorem 6.1. If freevars(t) ⊆ {v1, . . . , vn}, then

(t/[v1 ← s1, . . . , v1 ← sn])/σ = t/[v1 ← s1/σ, . . . , vn ← sn/σ].

Proof by structural induction on t.

If t is a constant, then (t/[v1...n ← s1...n])/σ and t/[v1...n ← s1...n/σ] are both t.

If t is a variable, then since freevars(t) ⊆ {v1, . . . , vn}, t = vi for some i. So

(t/[v1...n ← s1...n])/σ is si/σ, and t/[v1...n ← s1...n/σ] is also si/σ.

If t is (f a1 . . . am), then we may inductively assume

(ai/[v1...n ← s1...n])/σ = ai/[v1...n ← s1...n/σ],

212

and hence,

(t/[v1...n ← s1...n])/σ = ((f a1 . . . am)/[v1...n ← s1...n])/σ

= ((f a1/[v1...n ← s1...n] . . . am/[v1...n ← s1...n]))/σ

= (f (a1/[v1...n ← s1...n])/σ . . . (am/[v1...n ← s1...n])/σ)

= (f a1/[v1...n ← s1...n/σ] . . . am/[v1...n ← s1...n/σ]))

= (f a1 . . . am))/[v1...n ← s1...n/σ]

= t/[v1...n ← s1...n/σ].

If t is ((lambda (x1 . . . xm) β) a1 . . . am), then the situation is analo-

gous to the case for functions, so we omit the details.

Derived Rule 87. Dual substitution lemma 1
a = b
b = d
c = d
a = c

Derivation. (31)

a = b Given
b = d Given
a = d Trans. = (*1)
c = d Given
d = c Commute =
a = c Trans. = *1

Derived Rule 88. Dual substitution
t1 = s1
...
tn = sn
x/[v1 ← t1, . . . , vn ← tn] = x/[v1 ← s1, . . . , vn ← sn]

Derivation. Let σt = [v1...n ← t1...n] and σs = [v1...n ← s1...n], so that our goal is to

213

derive x/σt = x/σs. The derivation proceeds over the recursive structure of the term

x.

If x is a constant, then x/σt = x and x/σs = x, so our goal is to show x = x,

which can be done using the reflexivity rule.

If x is a variable, then there are two cases. If x = vi for some i, then x/σt = ti

and x/σs = si, so our goal is to prove ti = si. But this is one of our premises, so

we may simply use that proof. Otherwise, if x 6= vi for any i, then x/σt = x and

x/σs = x, so our goal is to show x = x, which we can do by reflexivity.

If x is a function application, (f a1 . . . am), then we may recursively con-

struct a proof of ai/σt = ai/σs for each i. In this case,

x/σt = (f a1/σt . . . am/σt), and

x/σs = (f a2/σs . . . am/σs),

so our goal is to derive

(f a1/σt . . . am/σt) = (f a2/σs . . . am/σs),

which we can do via = by arguments and our recursively constructed proofs.

Finally, x may be a lambda abbreviation, ((lambda (w1...m) β) a1...m). If

we let ci = ai/σt and di = ai/σs, then our goal, x/σt = x/σs, is the same as

((lambda (w1...m) β) c1...m) = ((lambda (w1...m) β) d1...m).

Now, as in the function application case, we may recursively construct ai/σt =

ai/σs, i.e., proofs of ci = di.

Next, let σc and σd be the following substitution lists,

σc = [w1 ← c1, . . . , wm ← cm], and

σd = [w1 ← d1, . . . , wm ← dm].

214

Since we can prove that each ci = di, σc and σd satisfy the criteria of the dual

substitution rule, and since β is smaller than x, it is well-founded to construct a

proof of β/σc = β/σd recursively. Rephrasing this conclusion using the definitions of

σc and σd, we find that we have derived

β/[w1...m ← a1...m/σt] = β/[wi...m ← a1...m/σs],

which, by Theorem 6.1, is the same as

(β[w1...m ← a1...m])/σt = (β/[w1...m ← a1...m])/σs. (∗1)

Using this result, we finish out the derivation as follows:

x = β/[w1...m ← a1...m] β-reduction (*2)
x/σt = (β/[w1...m ← a1...m])/σt Instantiation *2
(β[w1...m ← a1...m])/σt = (β/[w1...m ← a1...m])/σs *1
x/σs = (β/[w1...m ← a1...m])/σs Instantiation *2
x/σt = x/σs Dual substitution lemma 1

With the dual substitution rule in place, argument substitution into lambdas

can be done by beta-reducing the lambda with each list of actuals, and then using

the dual substitution rule to equate the results.

Derived Rule 89. Lambda = by arguments
t1 = s1
...
tn = sn
((lambda (x1...n) β) t1...n) = ((lambda (x1...n) β) s1...n)

Derivation.

((lambda (x1...n) β) t1...n) = β/[x1...n ← t1...n] β-reduction
β[x1...n ← t1...n] = β[x1...n ← s1...n] Dual subst.
((lambda (x1...n) β) t1...n) = β[x1...n ← s1...n] Trans. = (*1)
((lambda (x1...n) β) s1...n) = β/[x1...n ← s1...n] β-reduction
β/[x1...n ← s1...n] = ((lambda (x1...n) β) s1...n) Commute =
((lambda (x1...n) β) t1...n) = ((lambda (x1...n) β) s1...n) Trans. = *1

215

It is straightforward, but tedious, to adapt the above arguments to derive the

disjoined version of these rules. Accordingly, we only mention what these rules are,

without explaining the details of their derivation.

Derived Rule 90. Disjoined = by arguments
P ∨ t1 = s1
...
P ∨ tn = sn
P ∨ (f t1 . . . tn) = (f s1 . . . sn)

Derived Rule 91. Disjoined dual substitution
P ∨ t1 = s1
...
P ∨ tn = sn
P ∨ x/[v1 ← t1, . . . , vn ← tn] = x/[v1 ← s1, . . . , vn ← sn]

Derived Rule 92. Disjoined lambda = by arguments
P ∨ t1 = s1
...
P ∨ tn = sn
P ∨ ((lambda (x1...n) β) t1...n) = ((lambda (x1...n) β) s1...n)

With the argument-replacement rules in place, we can develop a general-

purpose subterm replacement rule. Given terms old and new, repl(x, old, new) pro-

duces a new term where all occurrences of old, not counting lambda bodies, have

been replaced by new. In particular,

– If x is old, then repl(x, old, new) = new.

– Otherwise, if x is a constant or a variable, then there are no occurrences of old

inside of x, so repl(x, old, new) = x.

– Otherwise, if x is (f t1 . . . tn), then the arguments may contain occurrences

of old, so repl(x, old, new) = (f t1
′ . . . tn

′), where each ti
′ is recursively

repl(ti, old, new).

216

– Otherwise, x is ((lambda (x1 . . . xn) β) t1 . . . tn). Now,

repl(x, old, new) = ((lambda (x1 . . . xn) β) t1
′ . . . tn

′),

where each ti′ is recursively repl(ti, old, new).

Derived Rule 93. Replace subterm

old = new
x = repl(x, old, new)

Derivation. The derivation follows the recursive structure of repl.

As a basis, if x is old then our goal is old = new, and we have been given a

proof of this. Otherwise, if x is a constant or a variable, our goal is x = x, which is

trivial by reflexivity.

Otherwise, if x is (f t1 . . . tn), let ti′ = repl(ti, old, new) for each i. We

may recursively derive ti = ti
′ for each i. From these proofs, the = by arguments rule

allows us to obtain our goal, (f t1 . . . tn) = (f t1
′ . . . tn

′).

Finally, if x is ((lambda (x1 . . . xn) β) t1 . . . tn) the case is similar. For

each i, let ti′ = repl(ti, old, new) and recursively derive ti = ti
′. From these proofs,

the lambda = by arguments rule allows us to obtain our goal,

((lambda (x1 . . . xn) β) t1 . . . tn) = ((lambda (x1 . . . xn) β) t1
′ . . . tn

′).

It is straightforward to adapt this argument to derive the analogous disjoined

rule, so we omit the details and only mention the rule, itself.

Derived Rule 94. Disjoined replace subterm

P ∨ old = new
P ∨ x = repl(x, old, new)

217

6.4 Evaluation

In the ACL2 theorem prover, and in our system, Skolem functions are usually

avoided, and most concepts are introduced as terminating, recursive functions. A

useful consequence of this approach is that most ground terms (terms with no free

variables) may be canonicalized to constants by simple evaluation. We now introduce

an evaluator which is similar to McCarthy’s [63] evaluator for Lisp.

We say a definition is a formula of the form (f x1 . . . xn) = β where the

xi are distinct variables and freevars(β) ⊆ {x1, . . . , xn}. This is a purely syntactic

criterion which is far more relaxed than the admission obligations for a recursive

function definition. For instance, we do not require that β is well-formed with respect

to an arity table, that f terminates, etc.

Our evaluator function, ev, takes three inputs: x, a ground term to evaluate;

defs, a list of definitions in the simple, syntactic sense above; and depth, a counter

which acts like a stack depth to ensure ev terminates. There are many reasons ev

might fail. For example, perhaps x is (f 1 2) but f is 3-ary, or perhaps depth is

simply too small to finish this computation. To signal failure, ev may return the

unquoted symbol NIL, whereas successful evaluations result in quoted constants.

We implement ev as a flag function which has two modes of operation; one for

evaluating a term, and another for evaluating a list of terms. The basic operation of

ev is as follows. Except where noted, the depth argument is not changed in recursive

calls.

– To ensure termination, if depth is zero, ev fails.

– If x is a constant, then ev simply returns x.

– If x is a variable, then it is not a ground term and ev fails.

218

– As a special case, (if a b c) is handled lazily, which allows ev to evaluate

recursive functions. First, ev attempts to evaluate a; any failure is propagated,

otherwise the constant a′ is produced. Then, if a′ is not the constant nil, ev

returns the result of recursively evaluating b, and otherwise it returns the result

of recursively evaluating c.

– For other function applications, (f t1 . . . tn), ev first eagerly evaluates each

ti; any failure is propagated, otherwise a list of constants, t1′, . . . , tn′, is pro-

duced. Now, there are two cases.

Suppose f is one of the primitive functions. If n has improper arity, ev fails.

Otherwise, (f t1
′ . . . tn

′) is a base-evaluable term, and ev uses logic.base-

evaluator to evaluate it to a constant.

Otherwise, ev consults the list of definitions to determine if f is a defined

function of the proper arity. If not, it fails. Otherwise, let the definition be

(f x1 . . . xn) = β. Now, since freevars(β) ⊆ {x1, . . . , xn}, and each ti′ is a

constant, β/[x1 ← t1
′, . . . , xn ← tn

′] is a ground term, and ev returns the result

of attempting to evaluate it after decreasing the depth by one.

– For lambda abbreviations, ((lambda (x1 . . . xn) β) t1 . . . tn), ev first ea-

gerly attempts to evaluate each ti, propagating any failure. Otherwise, each ti

has been successfully evaluated to the constant ti′, and ev returns the result of

recursively evaluating the new ground term, β/[x1 ← ti
′, . . . , xn ← tn

′], again

decreasing the depth by one to ensure termination.

The termination of ev can be established using a two-part measure where we

first consider the depth and then consider the rank of x.

We now turn our attention to the justification of ev.

219

Derived Rule 95. If when not nil

a 6= nil
(if a b c) = b

Derivation. (7)

x = nil ∨ (if x y z) = y Ax. if when nnil
a = nil ∨ (if a b c) = b Instantiation
a 6= nil Given
(if a b c) = b Modus ponens 2

Derived Rule 96. If when nil

a = nil
(if a b c) = c

Derivation. (7)

x 6= nil ∨ (if x y z) = z Axiom if when nil
a 6= nil ∨ (if a b c) = c Instantiation
a = nil Given
(if a b c) = c Modus ponens

Derived Rule 97. Evaluation

x = x′
, where ev(x, defs, depth) = x′, and all defs are axioms.

Derivation.

The derivation follows the recursive structure of ev. As a basis, if depth is

zero, then ev has failed so there is nothing to show; if x is a constant, then ev returns

x so our goal is to prove x = x, which we may do with the reflexivity rule; finally, if

x is a variable, then ev fails so there is nothing to show.

Supposing x is (if a b c), we may recursively derive a = a′. The first

case is that a′ is non-nil, then we may also recursively derive b = b′. Our goal

220

is (if a b c) = b′.

a′ 6= nil 6= constants
a = a′ Recursive construction
a 6= nil Substitute into 6= (*1)
(if a b c) = b If when not nil
b = b′ Recursive construction
(if a b c) = b′ Transitivity of = *1

The second case is that a′ is nil. Here, we may still recursively derive a = a′

(i.e., a = nil), and we may also recursively derive c = c′. Our goal is (if a b c) = c′.

a = nil Recursive construction
(if a b c) = c If when nil
c = c′ Recursive construction
(if a b c) = c′ Transitivity of =

Suppose x is some other function application, (f t1 . . . tn). Now we may

recursively derive ti = ti
′ for each i. The first case is that f is a primitive function.

Let c be the result of running logic.base-evaluator on (f t1
′ . . . tn

′). Now, our

goal is to derive (f t1 . . . tn) = c.

(f t1 . . . tn) = (f t1
′ . . . tn

′) = by arguments
((f t1

′ . . . tn
′) = c Base evaluation

(f t1 . . . tn) = c Transitivity of =

The second case is that f is a defined function. Let (f x1 . . . xn) = β be

the definition of f , and note that we have assumed this formula is an axiom. Suppose

that c is the result of recursively evaluating β/[x1...n ← t1...n
′]. We may recursively

derive β/[x1...n ← t1...n
′] = c, and our goal is to show (f t1 . . . tn) = c.

(f x1 . . . xn) = β Axiom
(f t1

′ . . . tn
′) = β/[x1...n ← t1...n

′] Instantiation
β/[x1...n ← t1...n

′] = c Recursive construction
(f t1

′ . . . tn
′) = c Transitivity of =

(f t1 . . . tn) = (f t1
′ . . . tn

′) = by arguments
(f t1 . . . tn) = c Transitivity of =

221

Finally, suppose x is ((lambda (x1...n) β) t1...n). We may recursively derive

ti = ti
′ for each i. Let c be the result of recursively evaluating β/[x1...n ← t1...n

′],

so we may also recursively derive β/[x1...n ← t1...n
′] = c. Our goal is to show

((lambda (x1...n) β) t1...n) = c, and this may be done as follows:

((lambda (x1...n) β) t1...n) = ((lambda (x1...n) β) t1...n
′) Lambda = by args.

((lambda (x1...n) β) t1...n
′) = β/[x1...n ← t1...n

′] Beta reduction
((lambda (x1...n) β) t1...n) = β/[x1...n ← t1...n

′] Transitivity of =
β/[x1...n ← t1...n

′] = c Recursive constr.
((lambda (x1...n) β) t1...n) = c Transitivity of =

222

Part III

Theorem Proving

223

Chapter 7

Clauses

To implement an effective proof search, we need to be able to work “backward”

from a goal instead of “forward” from our axioms. Our basic strategy for backward

proof search is as follows. First, we first convert the goal formula into conjunctive

normal form clauses, which are more convenient to work with than formulas because of

their regular structure. We then try to simplify these clauses, mainly through lemma-

driven rewriting, but also through other techniques. Ideally, each simplification will

leave us with reduced goals that are simpler to prove, or which are so simple that

we can prove them outright. To justify these simplifications, we need to be able to

“reverse” each reduction—that is, given proofs of the reduced clauses, we must be

able to derive proofs of the original goal clauses.

A clause in conjunctive normal form is a disjunction of one or more literals.

We represent literals as terms and use the words “term” and “literal” interchangeably.

We represent clauses as non-empty lists of terms. Given a literal, t, we say the term

formula for t is t 6= nil, and given a clause, C = [t1, . . . , tn], the clause formula for

C is t1 6= nil ∨ · · · ∨ tn 6= nil. When we speak of proving a clause, we really mean

proving the corresponding clause formula.

In this chapter, we explain how formulas may be converted to clauses and

introduce some basic ways to simplify clauses. For instance, we explain how to replace

the literals of a clause with equivalent literals. We also provide some routines to clean

up clauses and to split clauses into simpler subgoals.

224

7.1 Conversion to Clauses

Any formula can be converted into an equivalent clause. Our conversion pro-

cess begins with comp, an algorithm which, given a formula F as input, produces a

term, comp(F), that is equivalent in the following sense: given a proof of F we may

derive comp(F) 6= nil, and vice versa. We think of this algorithm as “compiling” a

formula into a term.

comp(a = b) , (equal a b)

comp(¬A) , (if comp(A) nil t)

comp(A ∨B) , (if comp(A) t comp(B)).

To establish the equivalence of F and comp(F) 6= nil, we first introduce some

supporting derivations to allow us to more easily work with terms involving if.

Derived Rule 98. Disjoined if when not nil

P ∨ a 6= nil
P ∨ (if a b c) = b

Derivation. (17)

x = nil ∨ (if x y z) = y Ax. if when nnil
a = nil ∨ (if a b c) = b Instantiation
P ∨ a = nil ∨ (if a b c) = b Expansion
P ∨ a 6= nil Given
P ∨ (if a b c) = b Dj. mp2

Derived Rule 99. Disjoined if when nil

P ∨ a = nil
P ∨ (if a b c) = c

Derivation. (17)

x 6= nil ∨ (if x y z) = z Axiom if when nil

225

a 6= nil ∨ (if a b c) = c Instantiation
P ∨ a 6= nil ∨ (if a b c) = c Expansion
P ∨ a = nil Given
P ∨ (if a b c) = c Dj. modus ponens

Formal Theorem 9. If redux same

(if x y y) = y

Proof.

x = nil ∨ (if x y z) = y Ax. if when nnil
x = nil ∨ (if x y y) = y Instantiation (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
x 6= nil ∨ (if x y y) = y Instantiation
(if x y y) = y ∨ (if x y y) = y Cut *1
(if x y y) = y Contraction

Formal Theorem 10. If when same

y 6= z ∨ (if x y z) = y

Proof.

x = x Reflexivity
y 6= z ∨ x = x Expansion (*1a)
y = y Reflexivity
y 6= z ∨ y = y Expansion (*1b)
y 6= z ∨ y = z Prop. schema
y 6= z ∨ z = y Dj. commute = (*1c)
y 6= z ∨ (if x y z) = (if x y y) Dj. = args *1abc (*1)
(if x y y) = y Th. if redux same
y 6= z ∨ (if x y y) = y Expansion
y 6= z ∨ (if x y z) = y Dj. trans. = *1

226

Derived Rule 100. If when same

b = c
(if a b c) = b

Derivation. (7)

y 6= z ∨ (if x y z) = y Th. if when same
b 6= c ∨ (if a b c) = b Instantiation
b = c Given
(if a b c) = b Modus ponens

Derived Rule 101. Disjoined if when same

P ∨ b = c
P ∨ (if a b c) = b

Derivation. (17)

y 6= z ∨ (if x y z) = y Th. if when same
b 6= c ∨ (if a b c) = b Instantiation
P ∨ b 6= c ∨ (if a b c) = b Expansion
P ∨ b = c Given
P ∨ (if a b c) = b Dj. modus ponens

Derived Rule 102. Compile formula lemma 1
B ∨ p = nil
C ∨ q = nil
(B ∨ C) ∨ (if p t q) = nil

Derivation. (17)

B ∨ p = nil Given
B ∨ (if p t q) = q Dj. if when nil
(B ∨ C) ∨ (if p t q) = q Multi assoc exp. (*1)
C ∨ q = nil Given
(B ∨ C) ∨ q = nil Multi assoc exp.
(B ∨ C) ∨ (if p t q) = nil Dj. trans. = *1

227

Derived Rule 103. Compile formula lemma 2
¬B ∨ p = t
¬C ∨ q = t
¬(B ∨ C) ∨ (if p t q) = t

Derivation. (90)

¬B ∨ p = t Given
¬B ∨ p 6= nil Dj. not nil from t
¬B ∨ (if p t q) = t Dj. if when nnil (*1)
¬C ∨ q = t Given
¬C ∨ t = q Dj. commute =
¬C ∨ (if p t q) = t Dj. if when same
¬(B ∨ C) ∨ (if p t q) = t Merge imp. *1

We are now ready for the main result. As one might expect, the derivation

follows the recursive structure of comp, but a slight twist is that we actually derive

two formulas at once. To indicate this, we put both formulas “below the line” in the

rule’s description.

Derived Rule 104. Compile Formula

¬F ∨ comp(F) = t
F ∨ comp(F) = nil

Derivation.

As a basis, suppose F is a = b. Now comp(F) is (equal a b), so our goals

and their derivations are as follows.

1. a 6= b ∨ (equal a b) = t.

x 6= y ∨ (equal x y) = t Axiom equal when same
a 6= b ∨ (equal a b) = t Instantiation

228

2. a = b ∨ (equal a b) = nil.

x = y ∨ (equal x y) = nil Axiom equal when diff
a = b ∨ (equal a b) = nil Instantiation

Otherwise, suppose F is ¬A. Now comp(F) is (if comp(A) nil t), and

we may recursively derive ¬A ∨ comp(A) = t and A ∨ comp(A) = nil. Then,

1. ¬¬A ∨ (if comp(A) nil t) = t.

A ∨ comp(A) = nil Recursive construction
A ∨ (if comp(A) nil t) = t Disjoined if when nil
¬¬A ∨ (if comp(A) nil t) = t Lhs insert ¬¬

2. ¬A ∨ (if comp(A) nil t) = nil.

¬A ∨ comp(A) = t Recursive construction
¬A ∨ comp(A) 6= nil Disjoined not nil from t
¬A ∨ (if comp(A) nil t) = nil Disjoined if when not nil

Finally, suppose F is A ∨ B. Now, comp(F) is (if comp(A) t comp(B)),

and we may recursively derive ¬A ∨ comp(A) = t, ¬B ∨ comp(B) = t, A ∨

comp(A) = nil, and B ∨ comp(B) = nil. Now,

1. ¬(A ∨B) ∨ (if comp(A) t comp(B)) = t.

¬A ∨ comp(A) = t Recursive construction
¬B ∨ comp(B) = t Recursive construction
¬(A ∨B) ∨ (if comp(A) t comp(B)) = t Compile formula lemma 2

2. (A ∨B) ∨ (if comp(A) t comp(B)) = nil.

A ∨ comp(A) = nil Recursive construction
B ∨ comp(B) = nil Recursive construction
(A ∨B) ∨ (if comp(A) t comp(B)) = nil Compile formula lemma 1

229

Hence, given any formula F , the singleton clause whose only literal is comp(F)

is equivalent to F . That is, given a proof of the clause formula, comp(F) 6= nil, we

may use the compile formula rule to derive F , and vice versa.

7.2 Updating Clauses

When we are trying to prove some goal clause, say C = [t1, . . . , tn], we will

often simplify each literal to produce an equivalent clause, C ′ = [t1′, . . . , tn′]. If, with

some further work, we manage to construct a proof of C ′, we will still need a way to

prove the original goal, C. In this section, we develop a rule which allows us to prove

C when given (1) a proof of C ′, and (2) a proof of ti = ti
′ for each i.

Derived Rule 105. Aux update clause lemma1
P ∨ b 6= nil
a = b
a 6= nil ∨ P

Derivation. (34)

a = b Given
P ∨ a = b Expansion
P ∨ b 6= nil Given
P ∨ a 6= nil Dj. sub. into 6=
a 6= nil ∨ P Commute or

Derived Rule 106. Aux update clause lemma2
P ∨ b 6= nil ∨Q
a = b
(a 6= nil ∨ P) ∨Q

Derivation. (59)

P ∨ b 6= nil ∨Q Given
(P ∨ b 6= nil) ∨Q Associativity
Q ∨ P ∨ b 6= nil Commute or

230

(Q ∨ P) ∨ b 6= nil Associativity
a = b Given
a 6= nil ∨Q ∨ P Aux update clause lm.1
a 6= nil ∨ P ∨Q Dj. commute or
(a 6= nil ∨ P) ∨Q Associativity

To keep proof sizes down, we implement our clause-updating rule in a tail-

recursive style which is somewhat similar to the revappend disjunction rule. At each

step, we think of the Di as “done”, and the si 6= nil as “to do”. Notice that the

inductive cases involve mainly a single application of the above lemmas, so the number

of proof steps required grows only linearly in the size of the clause.

Derived Rule 107. Aux update clause
D1...m ∨ s1 6= nil ∨ · · · ∨ sn 6= nil
t1 = s1
...
tn = sn
tn 6= nil ∨ · · · ∨ t1 6= nil ∨D1...m

Derivation. O(n)

As a basis, if n is 0 then we are already given a proof of our goal.

Otherwise, if n is 1 and m is 0,

s1 6= nil Given
t1 = s1 Given
t1 6= nil Substitute into 6=,

Otherwise, if n is 1 and m > 0,

D1...m ∨ s1 6= nil Given
t1 = s1 Given
t1 6= nil ∨D1...m Aux update clause lemma1

Otherwise, if n > 1 and m is 0. Let Si be si 6= nil. Now, for any A, if we can

231

establish A∨S2...n, then we may recursively derive tn 6= nil∨· · ·∨ t2 6= nil∨A using

the given proofs of t2 = s2, . . . , tn = sn; this is well-founded since n is decreasing.

Then,

s1 6= nil ∨ S2...n Given
S2...n ∨ s1 6= nil Commute or
t1 6= s1 Given
t1 6= nil ∨ S2...n Aux update clause lemma1
tn 6= nil ∨ · · · ∨ t1 6= nil Recursively, A← t1 6= nil

Finally, if n > 1 and m > 1, then as before let Si be si 6= nil and again

note that for any A, if we can establish A ∨ S2...n, then we may recursively derive

tn 6= nil ∨ · · · ∨ t2 6= nil ∨ A. Now,

(D1...m) ∨ s1 6= nil ∨ S2...n Given
t1 = s1 Given
(t1 6= nil ∨D1...m) ∨ S2...n Aux update clause lemma2
tn 6= nil ∨ · · · ∨ t1 6= nil ∨D1...m Recursively, A← t1 6= nil ∨D1...m

Derived Rule 108. Update clause
t1
′ 6= nil ∨ · · · ∨ tn′ 6= nil

t1 = t1
′

...
tn = tn

′

t1 6= nil ∨ · · · ∨ tn 6= nil

Derivation. O(n)

When we implement this derivation as a Lisp function, as a special opti-

mization we first check whether any ti
′ differs from ti. If none of the terms has

changed, we can simply reuse our first premise. Otherwise, we begin by deriving

tn 6= nil∨· · ·∨ t1 6= nil from these premises using the aux update clause rule. Then,

via rev disjunction, we obtain our goal.

It is straightforward to adapt the above derivations to obtain a disjoined ver-

232

sion of the update clause rule. We omit the details, and only summarize the rule,

below.

Derived Rule 109. Disjoined update clause
P ∨ t1′ 6= nil ∨ · · · ∨ tn′ 6= nil
P ∨ t1 = t1

′

...
P ∨ tn = tn

′

P ∨ t1 6= nil ∨ · · · ∨ tn 6= nil

7.3 Equivalent Literals

The update clause rule is somewhat weak in that it requires us to show each

replacement literal, ti′, is equal to the original literal, ti. But it would suffice to show

that ti and ti′ are equivalent in the sense of generalized Booleans—that is, either they

are both nil or are both non-nil. We can identify this situation with the function

iff, defined as follows.

Definition: iff
(pequal* (iff x y)

(if x
(if y t nil)

(if y nil t)))

The function iff is an equivalence relation which has many nice properties,

and it is useful to introduce a number of formal theorems and derived rules about it.

All of this is quite routine, so we only provide summaries here and put the details in

Appendix A.

Derived Rule 110. If of t

(if t b c) = b

233

Derived Rule 111. If of nil

(if nil b c) = c

Formal Theorem 11. Iff lhs false

x 6= nil ∨ (iff x y) = (if y nil t)

Formal Theorem 12. Iff lhs true

x = nil ∨ (iff x y) = (if y t nil)

Formal Theorem 13. Iff rhs false

y 6= nil ∨ (iff x y) = (if x nil t)

Formal Theorem 14. Iff rhs true

y = nil ∨ (iff x y) = (if x t nil)

Formal Theorem 15. Iff both true

x = nil ∨ y = nil ∨ (iff x y) = t

Formal Theorem 16. Iff both false

x 6= nil ∨ y 6= nil ∨ (iff x y) = t

Formal Theorem 17. Iff true false

x = nil ∨ y 6= nil ∨ (iff x y) = nil

Formal Theorem 18. Iff false true

x 6= nil ∨ y = nil ∨ (iff x y) = nil

Formal Theorem 19. Iff t when not nil

x = nil ∨ (iff x t) = t

Derived Rule 112. Iff t from 6= nil
a 6= nil
(iff a t) = t

234

Derived Rule 113. Disjoined iff t from 6= nil

P ∨ a 6= nil
P ∨ (iff a t) = t

Formal Theorem 20. Iff t when nil

x 6= nil ∨ (iff x t) = nil

Derived Rule 114. 6= nil from iff t

(iff a t) 6= nil
a 6= nil

Derived Rule 115. Disjoined 6= nil from iff t

P ∨ (iff a t) 6= nil
P ∨ a 6= nil

Formal Theorem 21. Iff nil when nil

x 6= nil ∨ (iff x nil) = t

Formal Theorem 22. Iff nil when not nil

x = nil ∨ (iff x nil) = nil

Formal Theorem 23. Iff nil or t

(iff x y) = nil ∨ (iff x y) = t

Formal Theorem 24. Reflexivity of iff

(iff x x) = t

Formal Theorem 25. Symmetry of iff

(iff x y) = (iff y x)

Derived Rule 116. Iff t from not nil

(iff a b) 6= nil
(iff a b) = t

235

Derived Rule 117. Disjoined iff t from not nil

P ∨ (iff a b) 6= nil
P ∨ (iff a b) = t

Derived Rule 118. Iff reflexivity

(iff a a) = t

Derived Rule 119. Commute iff

(iff a b) = t
(iff b a) = t

Derived Rule 120. Disjoined commute iff

P ∨ (iff a b) = t
P ∨ (iff b a) = t

Formal Theorem 26. Iff congruence lemma

x = nil ∨ y = nil ∨ (if x a b) = (if y a b)

Formal Theorem 27. Iff congruence lemma 2

x 6= nil ∨ y 6= nil ∨ (if x a b) = (if y a b)

Formal Theorem 28. Iff congruent if 1

(iff x y) = nil ∨ (if x a b) = (if y a b)

Formal Theorem 29. Iff congruent iff 2

(iff x y) = nil ∨ (iff z x) = (iff z y)

Formal Theorem 30. Iff congruent iff 1

(iff x y) = nil ∨ (iff x z) = (iff y z)

Formal Theorem 31. Iff of if x t nil

(iff (if x t nil) x) = t

236

Formal Theorem 32. Transitivity of iff

(iff x y) 6= t ∨ (iff y z) 6= t ∨ (iff x z) = t

Derived Rule 121. Transitivity of iff
(iff a b) = t
(iff b c) = t
(iff a c) = t

Derived Rule 122. Disjoined transitivity of iff
P ∨ (iff a b) = t
P ∨ (iff b c) = t
P ∨ (iff a c) = t

Formal Theorem 33. Iff from =

x 6= y ∨ (iff x y) = t

Derived Rule 123. Iff from =
a = b
(iff a b) = t

Derived Rule 124. Disjoined iff from =
P ∨ a = b
P ∨ (iff a b) = t

Formal Theorem 34. Iff from equal

(equal x y) 6= t ∨ (iff x y) = t

Derived Rule 125. Iff from equal

(equal a b) = t
(iff a b) = t

Derived Rule 126. Disjoined iff from equal

P ∨ (equal a b) = t
P ∨ (iff a b) = t

237

Derived Rule 127. Negative lit from 6= nil

a 6= nil
(not a) = nil

Derived Rule 128. Disjoined negative lit from = nil

P ∨ a = nil
P ∨ (not a) 6= nil

Derived Rule 129. Substitute iff into literal
b 6= nil
(iff a b) = t
a 6= nil

Derived Rule 130. Disjoined substitute iff into literal
P ∨ b 6= nil
P ∨ (iff a b) = t
P ∨ a 6= nil

We now develop a stronger clause-updating rule which only requires that each

ti is iff-equivalent to ti′. The derivation closely follows that of our update clause

rule, and we begin with iff-based versions of the lemmas.

Derived Rule 131. Aux update clause iff lemma1
P ∨ b 6= nil
(iff a b) = t
a 6= nil ∨ P

Derivation. (87)

(iff a b) = t Given
P ∨ (iff a b) = t Expansion
P ∨ b 6= nil Given
P ∨ a 6= nil Dj. sub. iff into literal
a 6= nil ∨ P Commute or

238

Derived Rule 132. Aux update clause iff lemma2
P ∨ b 6= nil ∨Q
(iff a b) = t
(a 6= nil ∨ P) ∨Q

Derivation. (112)

P ∨ b 6= nil ∨Q Given
(P ∨ b 6= nil) ∨Q Associativity
Q ∨ P ∨ b 6= nil Commute or
(Q ∨ P) ∨ b 6= nil Associativity (*1)
a = b Given
a 6= nil ∨Q ∨ P Aux update clause iff lm.1
a 6= nil ∨ P ∨Q Dj. commute or
(a 6= nil ∨ P) ∨Q Associativity

We can now adapt the aux update clause rule to develop an iff-based version.

Again the derivation follows a tail-recursive style, with the Di as “done” and the si

literals as “to do.”

Derived Rule 133. Aux update clause iff
D1...m ∨ s1 6= nil ∨ · · · ∨ sn 6= nil
(iff t1 s1) = t
...
(iff tn sn) = t
tn 6= nil ∨ · · · ∨ t1 6= nil ∨D1...m

Derivation. O(n)

This is just like the aux update clause rule, except that substitute iff into

literal is used instead of substitute into 6=, and the lemmas above are used instead of

the aux update clause lemmas.

239

Derived Rule 134. Update clause iff
t1
′ 6= nil ∨ · · · ∨ tn′ 6= nil

(iff t1 t1
′) = t

...
(iff tn tn

′) = t
t1 6= nil ∨ · · · ∨ tn 6= nil

Derivation. O(n)

As with the update clause rule, when we implement this derivation as a Lisp

function, we just reuse the proof of the first premise if no ti
′ is different than ti.

Otherwise, we derive tn 6= nil ∨ · · · ∨ t1 6= nil using the aux update clause iff rule,

then reverse this with rev disjunction to obtain our goal.

7.4 Clause Cleaning

Suppose we are trying to prove a list of clauses, C1, . . . , Cn. We now develop

a cleaning routine which performs some lightweight simplifications on these clauses.

This process involves standardizing certain literals into a common format, throwing

away redundant and useless literals, and eliminating certain “obvious” clauses. The

result of cleaning is a new, simpler list of clauses, say D1, . . . , Dm, which together

are sufficient to prove the original clauses—that is, given proofs of D1, . . . , Dm, it is

possible to construct proofs of C1, . . . , Cn.

We think of each literal as being either positive or negative, and the first stage

in our cleaning process is to normalize negative terms. We say terms of the form

(not guts),
(if guts nil t),
(equal guts nil),
(equal nil guts),
(iff guts nil), or
(iff nil guts),

240

are negative, and other literals are positive. For any term, t, we define the guts of

t, guts(t), as follows. If t is negative, guts(t) is the match for guts in the above

patterns; when t is positive, guts(t) is t, itself. Informally, the term formula for a

positive literal means “the guts are true,” and the formula for a negative literal means

“the guts are false.”

We think of (not guts) as the simplest form of negative literals, so we begin

by developing a derived rule which can prove t = (not guts(t)) for any negative

term, t. We make use of a few theorems to address the various kinds of negative

terms.

Formal Theorem 35. Standardize equal x nil

(equal x nil) = (not x)

Proof.

x = y ∨ (equal x y) = nil Ax. eq. when diff
x = nil ∨ (equal x nil) = nil Instantiation (*1a)
x = nil ∨ (if x y z) = y Ax. if when nnil
x = nil ∨ (if x nil t) = nil Instantiation
x = nil ∨ nil = (if x nil t) Dj. commute =
x = nil ∨ (equal x nil) = (if x nil t) Dj. trans. = *1a (*1)
x 6= y ∨ (equal x y) = t Ax. eq., same
x 6= nil ∨ (equal x nil) = t Instantiation (*2a)
x 6= nil ∨ (if x y z) = z Axiom if when nil
x 6= nil ∨ (if x nil t) = t Instantiation
x 6= nil ∨ t = (if x nil t) Dj. commute =
x 6= nil ∨ (equal x nil) = (if x nil t) Dj. trans. = *2a (*2)
(equal x nil) = (if x nil t)

∨ (equal x nil) = (if x nil t)
Cut *1, *2

(equal x nil) = (if x nil t) Contraction (*3)
(not x) = (if x nil t) Definition of not
(if x nil t) = (not x) Commute =
(equal x nil) = (not x) Trans. = *3

241

Formal Theorem 36. Standardize equal nil x

(equal nil x) = (not x)

Proof.

(equal x y) = (equal y x) Th. symmetry of eq.
(equal nil x) = (equal x nil) Instantiation
(equal x nil) = (not x) Th. standardize eq. x nil
(equal nil x) = (not x) Trans. =

Formal Theorem 37. Standardize iff x nil

(iff x nil) = (not x)

Proof.

x 6= nil ∨ (not x) = t Th. not when nil
x 6= nil ∨ t = (not x) Dj. commute =
x 6= nil ∨ (iff x nil) = t Th. iff nil, nil
x 6= nil ∨ (iff x nil) = (not x) Dj. trans. = (*1)
x = nil ∨ (not x) = nil Th. not when nnil
x = nil ∨ nil = (not x) Dj. commute =
x = nil ∨ (iff x nil) = nil Th. iff nil, nnil
x = nil ∨ (iff x nil) = (not x) Dj. trans. =
(iff x nil) = (not x)

∨ (iff x nil) = (not x)
Cut *1

(iff x nil) = (not x) Contraction

Formal Theorem 38. Standardize iff nil x

(iff nil x) = (not x)

Proof.

(iff x y) = (iff y x) Th. symmetry of iff
(iff nil x) = (iff x nil) Instantiation
(iff x nil) = (not x) Th. standardize iff x nil
(iff nil x) = (not x) Trans. =

242

Derived Rule 135. Standardize negative term

t = (not guts(t)) , where t is a negative term

Derivation.

If t is (not guts), the by the reflexivity rule we are done.

If t is (if guts nil t),
(not x) = (if x nil t) Definition of not
(if x nil t) = (not x) Commute =
(if guts nil t) = (not guts) Instantiation

Otherwise, t is (equal guts nil), (equal nil guts), (iff guts nil), or

(iff nil guts), and our goal follows by instantiating the above theorems.

We say a literal is a double negative if it is a negative term with negative

guts. To eliminate double negatives, we begin by simplifying them into the form

(not (not x)).

Derived Rule 136. Standardize double negative term

t = (not (not guts(guts(t)))) , where t is a double negative term

Derivation.

guts(t) = (not guts(guts(t))) Std. negative term
(not guts(t)) = (not (not guts(guts(t)))) = by arguments
t = (not guts(t)) Std. negative term
t = (not (not guts(guts(t)))) Transitivity of =

Formal Theorem 39. If redux t

(if t y z) = y

Proof.

t 6= nil Axiom t not nil

243

(if t y z) = y If when not nil

Formal Theorem 40. If redux nil

(if nil y z) = z

Proof.

nil = nil Reflexivity
(if nil y z) = z If when nil

Formal Theorem 41. If redux test

(if (if x y z) p q) = (if x (if y p q) (if z p q))

Proof.

x = nil ∨ (if x y z) = y Ax. if when nnil (*1a)
p = p Reflexivity (*p)
x = nil ∨ p = p Expansion (*1b)
q = q Reflexivity (*q)
x = nil ∨ q = q Expansion (*1c)
x = nil ∨ (if (if x y z) p q) = (if y p q) Dj. = args *1abc (*1)
x = nil ∨ (if x (if y p q) (if z p q))

= (if y p q)
Instantiation *1a

x = nil ∨ (if y p q)
= (if x (if y p q) (if z p q))

Dj. commute =

x = nil ∨ (if (if x y z) p q)
= (if x (if y p q) (if z p q))

Dj. trans. = *1 (**1)

x 6= nil ∨ (if x y z) = z Axiom if when nil (*2a)
x 6= nil ∨ p = p Expansion *p (*2b)
x 6= nil ∨ q = q Expansion *q (*2c)
x 6= nil ∨ (if (if x y z) p q) = (if z p q) Dj. = args *2abc (*2)
x 6= nil ∨ (if x (if y p q) (if z p q))

= (if z p q)
Instantiation *2a

x 6= nil ∨ (if z p q)
= (if x (if y p q) (if z p q))

Dj. commute =

x 6= nil ∨ (if (if x y z) p q)
= (if x (if y p q) (if z p q))

Dj. trans. = *2 (**2)

244

(if (if x y z) p q)
= (if x (if y p q) (if z p q))
∨ (if (if x y z) p q)
= (if x (if y p q) (if z p q))

Cut **1, **2

(if (if x y z) p q)
= (if x (if y p q) (if z p q))

Contraction

Formal Theorem 42. Not of not

(not (not x)) = (if x t nil)

Proof.

(not x) = (if x nil t) Definition of not
(not (not x)) = (not (if x nil t)) = by args
(not (if x nil t))

= (if (if x nil t) nil t)
Instantiation

(not (not x)) = (if (if x nil t) nil t) Trans. = (*1)
x = x Reflexivity (*2a)
(if nil y z) = z Th. if redux nil
(if nil nil t) = t Instantiation (*2b)
(if t y z) = y Th. if redux t
(if t nil t) = nil Instantiation (*2c)
(if x (if nil nil t) (if t nil t))

= (if x t nil)
= args *2abc (*2)

(if (if x y z) p q)
= (if x (if y p q) (if z p q))

Th. if redux test

(if (if x nil t) nil t)
= (if x (if nil nil t) (if t nil t))

Instantiation

(if (if x nil t) nil t) = (if x t nil) Trans. = *2
(not (not x)) = (if x t nil) Trans. = *1

Formal Theorem 43. Not of not under iff

(iff (not (not x)) x) = t

Proof.

(not (not x)) = (if x t nil) Th. not of not

245

x = x Reflexivity
(iff (not (not x)) x)

= (iff (if x t nil) x)
= by args

(iff (if x t nil) x) = t Th. iff of if x t nil
(iff (not (not x)) x) = t Trans. =

Derived Rule 137. Standardize double negative term under iff

(iff t guts(guts(t))) = t
, where t is a double negative term

Derivation. Let t′ be guts(guts(t)). Now,

t = (not (not t′)) Std. dbl. neg. term
(iff t (not (not t′))) = t Iff from = (*1)
(iff (not (not x)) x) = t Th. not of not under iff
(iff (not (not t′)) t′) = t Instantiation
(iff t t′) = t Transitivity of iff *1

Since a term might have any number of negatives, we define an algorithm,

normalize-nots, which repeatedly strips away double negatives until we are left

with a either positive or singly negative term in our preferred form, i.e., (not guts).

normalize-nots(a) ,
a if a is positive,
(not guts(a)) otherwise, if guts(a) is positive, or
normalize-nots(guts(guts(a))) otherwise.

We can see that this process leaves us with an iff-equivalent term, using the

following rule.

Derived Rule 138. Normalize nots

(iff a normalize-nots(a)) = t

Derivation. If a is positive, then normalize-nots(a) is a and our goal is to show

(iff a a) = t, which follows from the iff reflexivity rule.

246

If a is singly negative, then normalize-nots(a) is (not guts(a)) and our

goal is to show (iff a (not guts(a))) = t. Now,

a = (not guts(a)) Standardize negative term
(iff a (not guts(a))) = t Iff from =

Finally, suppose a is a double negative. Let a′ be guts(guts(a)) and also let

a′′ be normalize-nots(a′). Here, we may recursively derive (iff a′ a′′) = t, and

our goal is to derive (iff a a′′) = t.

(iff a a′) = t Std. dbl. neg. term under iff
(iff a′ a′′) = t Recursive construction
(iff a a′′) = t Transitivity of iff

The first step in our clause-cleaning routine is to simplify every literal in each

clause with normalize-nots. Since we can prove each simplified literal is iff-

equivalent to the original literal, we can prove each original clause from a proof of the

corresponding simplified clause with the update clause iff rule.

The next stage in our cleaning algorithm is to eliminate certain obvious clauses.

We say that certain literals, viz. (not nil) and constants other than nil, are obvi-

ously true. Given an obviously true literal, a, it is straightforward to prove the term

formula, a 6= nil.

Derived Rule 139. Obvious term

a 6= nil
, where a is obviously true

Derivation. If a is a constant other than nil, then we need only use the 6= constants

rule to conclude a 6= nil.

Otherwise, if a is (not nil), then we may derive a 6= nil as follows.

(not x) = (if x nil t) Definition of not
(not nil) = (if nil nil t) Instantiation (*1)

247

(if nil y z) = z Th. if redux nil
(if nil nil t) = t Instantiation
(not nil) = t Transitivity of = *1
(not nil) 6= nil Not nil from t

We say a clause is obvious whenever it contains an obviously true term. It is

straightforward to prove any obvious clause. First, using the obvious term rule, we

prove ti 6= nil, where ti is an obvious term in the clause. Then, by multi expansion,

we may obtain a proof of the whole clause.

After eliminating the obvious clauses, we throw out some other easy-to-prove

clauses. We say a pair of literals matching a and (not a) are complementary, and

if a clause contains any complementary literals, we call it a complementary clause.

It is straightforward to prove any complementary clause. In particular, suppose the

clause is [t1, . . . , tn], some ti is a and some tj is (not a). Then,

x 6= nil ∨ (not x) = t Th. not when nil
x 6= nil ∨ (not x) 6= nil Disjoined not nil from t
ti 6= nil ∨ tj 6= nil Instantiation, x← a
t1 6= nil ∨ · · · ∨ tn 6= nil Multi-or expansion

Next, we say certain literals, namely nil and any term of the form (not guts),

where guts is a non-nil constant, are absurd. Intuitively, absurd literals are useless

when trying to prove a clause—they are like the “false” in A∨ false—so we would like

to remove them from each clause.

Suppose our original clause is C = [t1, . . . , tn] and we throw away some (but

not all) of the terms to obtain D = [ti1 , . . . , tik]. Then given a proof of D, we may

prove C using the generic subset rule. What if every literal in C is absurd? Then

we have discovered C is unprovable. In this case, our cleaning routine immediately

stops and returns the original goals unchanged (which is clearly justifiable). But we

248

also return a flag that indicates an unprovable clause has been discovered, so that the

problem may be reported to the user.

After removing absurd literals, we remove any duplicate literals from each

clause, which is again justified by the generic subset rule.

Finally, we eliminate any subsumed clauses. That is, suppose our list of goal

clauses contains C1 and C2, where the literals of C1 are a subset of the literals of C2.

Then, we say that C2 is subsumed by C1: given a proof of C1, we can prove C2 via

the generic subset rule.

To review, the clause-cleaning process takes a list of goal clauses as input, and

produces a new, simpler list of goals by

1. standardizing not-variants like (equal x nil) into (not x),

2. normalizing any multiply negative literals,

3. removing any clauses with obvious literals,

4. removing any clauses with complementary literals,

5. removing any absurd and redundant literals from each clause, and

6. removing any subsumed clauses.

For each of these steps, we may obtain proofs of the input goals when given proofs

of the resulting clauses. Hence, the entire cleaning process may be justified: given

proofs of the cleaned clauses, we can prove our original goals.

7.5 Clause Splitting

In an ordinary mathematical proof, if we want to show some property, P ,

follows from a compound condition like A ∨ (B ∧ C), we usually consider subcases.

249

That is, first we show P holds when we assume A, then we show it holds when we

assume B and also assume C. In our system, and, or, and cond are just abbreviations

for if-expressions, so an analogous situation occurs when a goal clause contains an

if. In particular, instead of proving [. . . , (if a b c), . . .], it may be easier to prove

both [. . . , (not a), b, . . .] and [. . . , a, c, . . .], which together imply the original.

We now introduce an algorithm for splitting up a clause into new clauses based

upon the if-expressions at the top of each literal. The core of our routine, cs-aux, is

a recursive function which takes the input clause in two pieces: t1, . . . , tn, the literals

which are left “to do”, and d1, . . . , dm, the literals which are already “done.” Initially,

the done list will be empty and the entire goal clause is placed in the to do list.

Below, we present a simplified version of cs-aux. We do not necessarily

assume the clauses have been cleaned before clause splitting begins, so our algo-

rithm canonicalizes double negations and looks for negative terms in forms besides

(not guts). We write a to indicate any negative term whose guts are a, and a to

indicate any negative term whose guts are a.

1. cs-aux([], [d1...m]) , [[d1...m]]

2. cs-aux([a, t2...n], [d1...m]) , cs-aux([a, t2...n], [d1...m])

3. cs-aux([(if a b c), t2...n], [d1...m]) ,

app
(

cs-aux([(not a), (not b), t2...n], [d1...m]),
cs-aux([a, (not c), t2...n], [d1...m])

)
4. cs-aux([(if a b c), t2...n], [d1...m]) ,

app
(

cs-aux([(not a), b, t2...n], [d1...m]),
cs-aux([a, c, t2...n], [d1...m])

)
5. cs-aux([a, t2...n], [d1...m]) , cs-aux([t2...n], [(not a), d1...m])

6. cs-aux([a, t2...n], [d1...m]) , cs-aux([t2...n], [a, d1...m])

250

To see that cs-aux terminates, let m(t) measure a term as follows,

m(a) , 1 +m(a)

m((if a b c)) , 1 +m(a) +m(b) +m(c)

m() , 1.

and observe that ∑m(ti) decreases in each recursive call.

How can we justify cs-aux? If we let T1, . . . , Tn be the term formulas for

ti, . . . , tn, and similarly let D1, . . . , Dm be the term formulas for d1, . . . , dm, then we

say the step goal for cs-aux is (T1 ∨ · · · ∨ Tn) ∨ (D1 ∨ · · · ∨Dm). We will now show:

– in the basis case, Line 1, the step goal may be derived given a proof of the

resulting clause, i.e., given a proof of D1 ∨ · · · ∨Dm, and

– in the recursive cases, Lines 2-6, the step goal may be derived given proofs of

the step goals for each recursive call of cs-aux.

Together, by induction, these results allow us to derive the step goal for cs-aux when

given proofs of the clauses it produces.

These derivations are somewhat involved, so we address each line in turn. We

sometimes find it convenient to develop auxiliary rules to handle the various cases for

n and m. These rules are tedious, so we only summarize them here and leave their

derivations to Appendix B.

Line 1. cs-aux([], [d1...m]) , [[d1...m]]

This is our basis case, and it is trivial. Our goal is to prove D1 ∨ · · · ∨ Dm,

and we are given a proof of [d1...m]. That is, we have been given a proof of our goal.

Line 2. cs-aux([a, t2...n], [d1...m]) , cs-aux([a, t2...n], [d1...m])

251

We make use of two rules from Appendix B.

Derived Rule 140. Aux split double negate lemma1
(b 6= nil ∨ P) ∨Q
(iff a b) = t
(a 6= nil ∨ P) ∨Q

Derived Rule 141. Aux split double negate lemma2
b 6= nil ∨ P
(iff a b) = t
a 6= nil ∨ P

Our goal for this line is to derive (a 6= nil ∨ T2...n) ∨ D1...m, and we may

assume we are given a proof of (a 6= nil∨T2...n)∨D1...m. As a lemma, we may derive

(iff a a) = t using the standardize double negative term under iff rule. Then,

our goal follows from either substitute iff into literal or one of the above lemmas, as

appropriate for n and m.

Line 3.
cs-aux([(if a b c), t2...n], [d1...m]) ,

app
(

cs-aux([(not a), (not b), t2...n], [d1...m]),
cs-aux([a, (not c), t2...n], [d1...m])

)

We make use of three rules from Appendix B.

Derived Rule 142. Aux split negative
(not a) 6= nil ∨ (not b) 6= nil
a 6= nil ∨ (not c) 6= nil
(not (if a b c)) 6= nil

Derived Rule 143. Aux split negative 1
((not a) 6= nil ∨ (not b) 6= nil ∨ P) ∨Q
(a 6= nil ∨ (not c) 6= nil ∨ P) ∨Q
t1 = (not (if a b c))
(t1 6= nil ∨ P) ∨Q

Derived Rule 144. Aux split negative 2
((not a) 6= nil ∨ (not b) 6= nil) ∨ P
(a 6= nil ∨ (not c) 6= nil) ∨ P
t1 = (not (if a b c))
t1 6= nil ∨ P

252

Our goal for this line is to derive ((if a b c) 6= nil ∨ T2...n) ∨ D1...m, given

proofs of ((not a) 6= nil∨(not b) 6= nil∨T2...n)∨D1...m and (a 6= nil∨(not c) 6=

nil ∨ T2...n) ∨D1...m.

As a lemma, we may derive (if a b c) = (not (if a b c)) using the stan-

dardize negative term rule. When n = 0 and m = 0, we have (not (if a b c)) 6=

nil by the aux split negative rule; this can be combined with our lemma via the

substitute into 6= rule to prove our goal. Otherwise, when n ≥ 1 and m ≥ 1, our goal

may be derived from our premises and our lemma via the aux split negative 1 rule.

Finally, if only one of n = 0 or m = 0, our goal follows from the aux split negative 2

rule, but note that in the case where m = 0, the premises must first be coerced into

the appropriate form via the associativity rule.

Line 4.
cs-aux([(if a b c), t2...n], [d1...m]) ,

app
(

cs-aux([(not a), b, t2...n], [d1...m]),
cs-aux([a, c, t2...n], [d1...m])

)

We make use of three rules from Appendix B.

Derived Rule 145. Aux split positive
(not a) 6= nil ∨ b 6= nil
a 6= nil ∨ c 6= nil
(if a b c) 6= nil

Derived Rule 146. Aux split positive 1
((not a) 6= nil ∨ b 6= nil ∨ P) ∨Q
(a 6= nil ∨ c 6= nil ∨ P) ∨Q
((if a b c) 6= nil ∨ P) ∨Q

Derived Rule 147. Aux split positive 2
((not a) 6= nil ∨ b 6= nil) ∨ P
(a 6= nil ∨ c 6= nil) ∨ P
(if a b c) 6= nil ∨ P

Our goal for this line is to derive ((if a b c) 6= nil ∨ T2...n) ∨ D1...m when

given proofs of ((not a) 6= nil ∨ b 6= nil ∨ T2...n) ∨ D1...m and (a 6= nil ∨ c 6=

253

nil ∨ T2...n) ∨D1...m. When n = 1 and m = 0, we may use the aux split positive rule

and when n > 1 and m > 0, we may use the aux split positive 1 rule. When n = 1

or m = 0, the goal from the aux split positive 2 rule, but note that if m = 0 the

premises must first be coerced into the appropriate form via the associativity rule.

Line 5. cs-aux([a, t2...n], [d1...m]) , cs-aux([t2...n], [(not a), d1...m])

We make use of two rules from Appendix B.

Derived Rule 148. Aux split default 1
P ∨ b 6= nil ∨Q
a = b
(a 6= nil ∨ P) ∨Q

Derived Rule 149. Aux split default 2
P ∨ b 6= nil
a = b
a 6= nil ∨ P

In this line, we need to establish (a 6= nil ∨ T2...n) ∨ D1...m when given

T2...n ∨ (not a) 6= nil ∨ D1...m. As a lemma, we may derive a = (not a) using

the standardize negative term rule. Now, if n = 1 and m = 0, our goal follows from

our premise, our lemma, and the substitute into 6= rule. Otherwise, if n > 1 and

m > 0, we use aux split default 1. Finally, if only one of n = 1 or m = 0 holds, we

use aux split default 2, but note that in the case where m = 0, we must first prepare

our premise using the commute or rule.

Line 6. cs-aux([a, t2...n], [d1...m]) , cs-aux([t2...n], [a, d1...m])

Our goal for this line is to derive (a 6= nil∨T2...n)∨D1...m when given a proof

of T2...n ∨ a 6= nil ∨D1...m. If n = 1 and m = 0, our premise is the same as our goal

so there is nothing to do. Otherwise, if n = 1 and m > 0, we only need to commute

our premise with commute or. Finally, if n > 1 and m > 0, we can derive our goal

with the following rule.

254

Derived Rule 150. Aux split default 3

P ∨ A ∨Q
(A ∨ P) ∨Q

Derivation. (24)

P ∨ A ∨Q Given
P ∨Q ∨ A Dj. commute or
(P ∨Q) ∨ A Associativity
A ∨ P ∨Q Commute or
(A ∨ P) ∨Q Associativity

The basic cs-aux algorithm presented above can lead to an exponential in-

crease in the number of goal clauses. One way to reduce this is to first check whether

there is an easy way to prove either of the new goals before recurring. In particular,

we check whether one of the newly produced literals (1) is obvious, or (2) is the com-

plement of another literal. When this occurs, it is straightforward to prove the new

goal, which obviates the need to recur down that branch.

Even with this improvement, cs-aux sometimes generates too many subgoals.

It is useful to add a counter to cs-aux which can be used to force it to stop splitting

after a certain number of clauses have been generated. This way, other routines (such

as our cleaning and rewriting) may be able to prove some of the clauses before further

splitting is done.

7.6 If Lifting

Our clause-splitting algorithm only considers if-expressions at the top of each

literal, so we now introduce a routine that lifts more deeply occurring if-expressions

to the top of a term. For instance, the term (f (if a b c)) can be lifted to produce

the provably equal term (if a (f b) (f c)).

255

We say a term is simple when it is if-free; more formally, constants and

variables are always simple, (f t1 . . . tn) is simple when each ti is simple, and

((lambda (x1 . . . xn) β) t1 . . . tn) is simple when each ti is simple. Note that

we do not consider if-expressions which occur within the body of a lambda, and

generally throughout this section we treat lambda bodies as opaque.

We say x is a subterm of y whenever x occurs within y (ignoring lambda

bodies). For instance, the subterms of (cons a b) are a, b, and (cons a b), itself.

The tests of a term, t, are the set of all a such that (if a b c) is a subterm of t. For

instance, the tests of (if (if a t nil) b c) are a and (if a t nil).

We say a term is lifted when, ignoring lambda bodies, the actuals of every

lambda and the arguments of every function application besides if are simple. Given

any term, our lifting algorithm produces a provably equal, lifted term; given any

lifted term, our clause-splitting algorithm produces clauses that contain only simple

literals. In this sense, lifting followed by clause splitting is complete, and produces

clauses with no if-expressions remaining.

How does our lifting algorithm proceed?

To begin, we say a splitting assignment is a mapping from terms to truth

values. Given a splitting assignment, A, we may factor a term, t, to produce a new

term, which we denote t|A. Intuitively, t|A is a simplification of t where we assume the

splitting assignment’s bindings are satisfied, and reduce any if-expressions having to

do with the bound terms. In particular, if t is a constant or a variable then t|A , t,

for if-expressions

(if a b c)|A ,

b|A if A binds a|A to t,
c|A if A binds a|A to nil, or
(if a|A b|A c|A) otherwise,

256

for any other function applications

(f t1 . . . tn)|A , (f t1|A . . . tn|A),

and for lambda abbreviations

((lambda (x1 . . . xn) β) t1 . . . tn)|A ,

((lambda (x1 . . . xn) β) t1|A . . . tn|A).

To justify factoring, we will show that t = t|A is provable when the the bindings

made by A are satisfied. It is easy to see that when A is empty, t|A is the same as t, so

t = t|A follows by reflexivity. But when A is non-empty, we want to show something

like “A” → t = t|A, or in other words, “¬A” ∨ t = t|A. To make this more precise,

suppose A binds the terms t1, . . . , tn to the truth values v1, . . . , vn, respectively. Then,

we first define bhyp(ti), the binding hypothesis of each ti, as

bhyp(ti) ,

ti = nil if vi is t, or
ti 6= nil otherwise,

and we define ahyps(A), the assignment hypothesis for A, as

ahyps(A) , bhyp(t1) ∨ · · · ∨ bhyp(tn).

Intuitively, ahyps(A) describes “¬A,” and is true only when one of the bindings from

A is violated. So when A is non-empty, we want to be able to derive ahyps(A)∨ t =

t|A. We begin with a couple of auxiliary rules that assist in the derivation.

Derived Rule 151. Factor lemma 1
P ∨ a2 6= nil
P ∨ a1 = a2
P ∨ b1 = b2
P ∨ (if a1 b1 c) = b2

Derivation. (79)

257

P ∨ a2 6= nil Given
P ∨ a1 = a2 Given
P ∨ a1 6= nil Dj. sub. into 6= (*1)
x = nil ∨ (if x y z) = y Ax. if when nnil
a1 = nil ∨ (if a1 b1 c) = b1 Instantiation
P ∨ a1 = nil ∨ (if a1 b1 c) = b1 Expansion
P ∨ (if a1 b1 c) = b1 Dj. mp2 *1
P ∨ b1 = b2 Given
P ∨ (if a1 b1 c) = b2 Dj. trans. =

Derived Rule 152. Factor lemma 2
P ∨ a2 = nil
P ∨ a1 = a2
P ∨ c1 = c2
P ∨ (if a1 b c1) = c2

Derivation. (79)

P ∨ a2 = nil Given
P ∨ a1 = a2 Given
P ∨ a1 = nil Dj. trans. = (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
a1 6= nil ∨ (if a1 b c1) = c1 Instantiation
P ∨ a1 6= nil ∨ (if a1 b c1) = c1 Expansion
P ∨ (if a1 b c1) = c1 Dj. mp *1
P ∨ c1 = c2 Given
P ∨ (if a1 b c1) = c2 Dj. trans. =

Derived Rule 153. Factor

ahyps(A) ∨ t = t|A
, where A is non-empty

Derivation.

If t is a constant or a variable, then t|A is just t and by reflexivity we may

conclude t = t|A; then by expansion we have ahyps(A) ∨ t = t|A.

258

If t is a function application other than if, say (f a1 . . . an), then t|A is

(f a1|A . . . an|A). We may recursively derive ahyps(A) ∨ ai = ai|A for each i.

Now our goal, ahyps(A) ∨ (f a1 . . . an) = (f a1|A . . . an|A), follows from the

disjoined = by args rule.

If t is a lambda abbreviation, then the situation is analogous except that we

use the disjoined lambda = by args rule instead.

Otherwise, t is (if a b c), and there are three cases. If A does not give a

binding for a|A, then t|A is (if a|A b|A c|A) and we can use the same argument as

for other function applications.

Next, if A binds a|A to t, then t|A is b|A, so our goal is to show ahyps(A) ∨

(if a b c) = b|A. We may recursively derive ahyps(A)∨a = a|A and ahyps(A)∨b =

b|A. Then,

a|A 6= nil ∨ a|A = nil Propositional schema
a|A = nil ∨ a|A 6= nil Commute or
ahyps(A) ∨ a|A 6= nil Multi-assoc expansion (*1)
ahyps(A) ∨ a = a|A Recursive construction (*2)
ahyps(A) ∨ b = b|A Recursive construction (*3)
ahyps(A) ∨ (if a b c) = b|A Factor lemma 1, *1–3

Finally, if A binds a|A to nil, then t|A is c|A, so our goal is to show ahyps(A)∨

(if a b c) = c|A. Now we may recursively derive two formulas: ahyps(A)∨a = a|A

and ahyps(A) ∨ c = c|A. Then,

a|A 6= nil ∨ a|A = nil Propositional schema
ahyps(A) ∨ a|A = nil Multi-assoc expansion (*1)
ahyps(A) ∨ a = a|A Recursive construction (*2)
ahyps(A) ∨ c = c|A Recursive construction (*3)
ahyps(A) ∨ (if a b c) = c|A Factor lemma 2, *1–3

Now that factoring is in place, we are ready to introduce the main term trans-

259

formation for if-lifting, which we call cases. Given a term x we want to transform,

and list of terms, cs = [c1, . . . , cn], which are the various cases to consider, we can cre-

ate a new term, x′, which reorganizes x into its factorings under the possible splitting

assignments to the cases. Intuitively, x′ is something like

(if c1
. . .

(if cn
x|[c1←t, ..., cn−1←t, cn←t]

x|[c1←t, ..., cn−1←t, cn←nil])
. . .)

x|[c1←nil, ..., cn−1←nil, cn←nil]),

except that we collapse if-expressions whose true and false branches are the same.

More precisely, x′ is the result of the algorithm cases(x, cs, A), which as inputs takes

a term x, the list of cases, cs, and a splitting assignment, A, which is ordinarily empty

to begin with. The base case is

cases(x, [], A) , x|A,

and otherwise, we say

cases(x, [c1, . . . , cn], A) ,

xt if xt is xf , or
(if c1 xt xf) otherwise,

where xt and xf are recursively defined as follows

xt , cases(x, [c2, . . . , cn], c1 ← t :: A), and

xf , cases(x, [c2, . . . , cn], c1 ← nil :: A).

The term produced by cases is provably equal to x when the bindings made by

A are satisfied. More precisely, if A is empty then we can prove x = cases(x, cs, A)

and otherwise we can prove ahyps(A) ∨ x = cases(x, cs, A). The main auxiliary

rules we need are the following.

Formal Theorem 44. Cases lemma

¬(x = nil ∨ a = y) ∨ ¬(x 6= nil ∨ a = z) ∨ a = (if x y z)

260

Proof.

x = nil ∨ (if x y z) = y Ax. if when nnil
x = nil ∨ y = (if x y z) Dj. commute =
(¬(x = nil ∨ a = y) ∨ x = nil) ∨ y = (if x y z) Multi assoc exp. (*1a)
¬(x = nil ∨ a = y) ∨ x = nil ∨ a = y Prop. schema
(¬(x = nil ∨ a = y) ∨ x = nil) ∨ a = y Associativity
(¬(x = nil ∨ a = y) ∨ x = nil) ∨ a = (if x y z) Dj. trans. = *1a
¬(x = nil ∨ a = y) ∨ x = nil ∨ a = (if x y z) Right assoc.
(x = nil ∨ a = (if x y z)) ∨ ¬(x = nil ∨ a = y) Commute or
x = nil ∨ a = (if x y z) ∨ ¬(x = nil ∨ a = y) Right assoc. (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
x 6= nil ∨ z = (if x y z) Dj. commute =
(¬(x 6= nil ∨ a = z) ∨ x 6= nil) ∨ z = (if x y z) Multi assoc exp. (*2a)
¬(x 6= nil ∨ a = z) ∨ x 6= nil ∨ a = z Prop. schema
(¬(x 6= nil ∨ a = z) ∨ x 6= nil) ∨ a = z Associativity
(¬(x 6= nil ∨ a = z) ∨ x 6= nil) ∨ a = (if x y z) Dj. trans. = *2a
¬(x 6= nil ∨ a = z) ∨ x 6= nil ∨ a = (if x y z) Right assoc.
(x 6= nil ∨ a = (if x y z)) ∨ ¬(x 6= nil ∨ a = z) Commute or
x 6= nil ∨ a = (if x y z) ∨ ¬(x 6= nil ∨ a = z) Right assoc. (*2)
(a = (if x y z) ∨ ¬(x = nil ∨ a = y))

∨ a = (if x y z) ∨ ¬(x 6= nil ∨ a = z)
Cut *1, *2

(a = (if x y z) ∨ a = (if x y z))
∨ ¬(x 6= nil ∨ a = z) ∨ ¬(x = nil ∨ a = y)

Dj. assoc lm. 3

(a = (if x y z) ∨ a = (if x y z))
∨ ¬(x = nil ∨ a = y) ∨ ¬(x 6= nil ∨ a = z)

Dj. commute or

(¬(x = nil ∨ a = y) ∨ ¬(x 6= nil ∨ a = z))
∨ a = (if x y z) ∨ a = (if x y z)

Commute or

(¬(x = nil ∨ a = y) ∨ ¬(x 6= nil ∨ a = z))
∨ a = (if x y z)

Dj. contraction

¬(x = nil ∨ a = y)
∨ ¬(x 6= nil ∨ a = z) ∨ a = (if x y z)

Right assoc.

Derived Rule 154. Cases lemma1
x = nil ∨ a = b
x 6= nil ∨ a = c
a = (if x b c)

Derivation. (12)

¬(x = nil ∨ a = y)
∨ ¬(x 6= nil ∨ a = z) ∨ a = (if x y z)

Cases lemma

261

¬(x = nil ∨ a = b)
∨ ¬(x 6= nil ∨ a = c) ∨ a = (if x b c)

Instantiation

x = nil ∨ a = b Given
¬(x 6= nil ∨ a = c) ∨ a = (if x b c) Modus ponens
x 6= nil ∨ a = c Given
a = (if x b c) Modus ponens

Derived Rule 155. Disjoined cases lemma1
P ∨ x = nil ∨ a = b
P ∨ x 6= nil ∨ a = c
P ∨ a = (if x b c)

Derivation. (31)

¬(x = nil ∨ a = y)
∨ ¬(x 6= nil ∨ a = z) ∨ a = (if x y z)

Cases lemma

¬(x = nil ∨ a = b)
∨ ¬(x 6= nil ∨ a = c) ∨ a = (if x b c)

Instantiation

P ∨ ¬(x = nil ∨ a = b)
∨ ¬(x 6= nil ∨ a = c) ∨ a = (if x b c)

Expansion

P ∨ x = nil ∨ a = b Given
P ∨ ¬(x 6= nil ∨ a = c) ∨ a = (if x b c) Dj. modus ponens
P ∨ x 6= nil ∨ a = c Given
P ∨ a = (if x b c) Dj. modus ponens

To produce smaller proofs, it is also useful to somewhat optimize the simple

propositional manipulation, below.

Derived Rule 156. Lhs commute or then rassoc

(A ∨ B) ∨ C
B ∨ A ∨ C

Derivation. (25)

(A ∨ B) ∨ C Given
C ∨ A ∨ B Commute or
(C ∨ A) ∨ B Associativity
B ∨ C ∨ A Commute or
B ∨ A ∨ C Dj. commute or

262

We can now justify the cases rule.

Derived Rule 157. Cases

[ahyps(A) ∨] x = cases(x, cs, A)

By this notation, we mean if A is empty we may derive x = cases(x, cs, A),

and otherwise we may derive ahyps(A) ∨ x = cases(x, cs, A).

Derivation.

As a basis, if cs is empty then cases(x, cs, A) is x|A. When A is empty, x|A is

just x, so our goal follows from reflexivity. Otherwise, we want to show ahyps(A) ∨

x = x|A, which we may do with the factor rule.

Otherwise, let cs be [c1, . . . , cn], and let xt and xf be as above. To begin with,

if A is empty, we may recursively derive

(∗1) c1 = nil ∨ x = xt, and

(∗2) c1 6= nil ∨ x = xf .

Now, if xt and xf are the same, then cases(x, cs, A) is xt and our goal is to

show x = xt, which we can do as follows.

x = xt ∨ x = xt Cut *1, *2
x = xt Contraction

Otherwise, xt and xf are distinct, so cases(x, cs, A) is (if c1 xt xf), and

our goal is to show x = (if c1 xt xf), which follows directly from *1 and *2 using

cases lemma1.

263

Otherwise, suppose A is non-empty, so we may recursively derive

(∗1) (c1 = nil ∨ ahyps(A)) ∨ x = xt, and

(∗2) (c1 6= nil ∨ ahyps(A)) ∨ x = xf .

Now, if xt and xf are the same, our goal is to show ahyps(A)∨ x = xt, which

we can do as follows.

c1 = nil ∨ ahyps(A) ∨ x = xt Right associativity *1
c1 6= nil ∨ ahyps(A) ∨ x = xt Right associativity *2
(ahyps(A) ∨ x = xt) ∨ ahyps(A) ∨ x = xt Cut
ahyps(A) ∨ x = xt Contraction

Finally, if xt and xf are distinct, our goal is ahyps(A) ∨ x = (if c1 xt xf).

Then,

ahyps(A) ∨ c1 = nil ∨ x = xt Lhs commute or then rassoc *1
ahyps(A) ∨ c1 6= nil ∨ x = xf Lhs commute or then rassoc *2
ahyps(A) ∨ x = (if c1 xt xf) Disjoined cases lemma1

We say the unlifted subterms of a term are the top-level subterms which cause

the term not to be lifted. For instance, the unlifted subterms of

(if a
(if b

(f c (if x nil t))
nil)

(g (if y nil t))

are (f c (if x nil t)) and (g (if y nil t)). Our if-lifting routine is an iter-

ative process which, in each pass, transforms every unlifted subterm, u, by applying

cases to u, using the simple tests of u as the cases. For the example term above, in

one pass we would transform the subterm (f c (if x nil t)) by splitting it into

cases on x, and transform (g (if y nil t)) by splitting it into cases on y. The

resulting term would be

264

(if a
(if b

(if x (f c nil) (f c t))
nil)

(if y (g nil) (g t))),

and since this resulting term is lifted, no additional passes would be necessary.

We implement each pass of our if-lifting routine with the operation lift1. For

constants and variables we define lift1(x) , x, for if-expressions,

lift1((if a b c)) , (if lift1(a) lift1(b) lift1(c)),

and for any other function application or lambda abbreviation,

lift1(x) ,

x if every argument is simple, or
cases(x, stests(x), []) otherwise,

where stests(x) gathers the simple tests of x.

Derived Rule 158. Lift1

x = lift1(x)

Derivation. If x is a constant or a variable, this is trivial by reflexivity.

If x is (if a b c), we may recursively derive a = lift1(a), b = lift1(b), and

c = lift1(c), and our goal follows from the = by args rule.

Otherwise, if x is any other function application or lambda abbreviation, then

there are two cases. If every argument is simple, we only need to show x = x, which

follows from reflexivity. Otherwise, we need to show x = cases(x, stests(x), []),

which follows from the cases rule.

Our full if-lifting algorithm, lift(x), repeatedly applies lift1 until a fixed-

point is reached. Since we can prove x = lift1(x) for each step we take, it is easy to

265

prove x = lift(x) inductively via the transitivity of =. To if-lift a clause, we apply

lift to each literal; this reduction can be justified via the update clause rule.

Showing that lift(x) terminates is somewhat involved. The main idea is to

first define a measure, idepth, as follows. The idepth of any constant or variable is

zero. For if-expressions

idepth((if a b c)) , 1 + max{idepth(a), idepth(b), idepth(c)},

and for other functions applications or lambda abbreviations

idepth(x) , max{idepth(ti)},

where the ti are the arguments or actuals. To admit lift, we show that whenever

lift1(x) 6= x, then maximum idepth of any unlifted subterm in lift1(x) is less

than that for x.

Like clause splitting, full if-lifting is sometimes takes too much time or pro-

duces proofs that are too large. It is straightforward to develop a version of lift1

which considers at most the first n terms from stests(x), and similarly we can de-

velop a restricted version of lift which applies this limited lift1 only until some

limit is reached. This allows other techniques such as rewriting to reduce the inter-

mediate terms before further lifting.

266

Chapter 8

Assumptions

Suppose C = [t1, . . . , tn] is a clause we are trying to prove. Our rewriter works

literal by literal, walking through each ti and using assumptions, evaluation, and

user-supplied rewrite rules to produce a supposedly simpler term, ti′. In this chapter,

we explain how assumptions are made and used.

Where do assumptions come from? One source is the clause itself. As each

literal is being rewritten, we can assume the other literals are false. That is, let

T1, . . . , Tn be the term formulas for t1, . . . , tn, so the formula for C is T1 ∨ · · · ∨ Tn.

Suppose we would like to rewrite tn to tn′. Now, our original goal is propositionally

equivalent to (¬T1∧ · · ·∧¬Tn−1)→ tn 6= nil, and our simplified goal is equivalent to

(¬T1 ∧ · · · ∧ ¬Tn−1)→ tn
′ 6= nil.

So, if we can prove this simplified goal and we can also establish

(¬T1 ∧ · · · ∧ ¬Tn−1)→ (iff tn tn
′) = t,

then we can recover a proof of our original goal via the disjoined substitute iff into

literal rule. In other words, the rewriter need not show tn and tn′ are always and ex-

actly equal, but only that they are iff-equivalent when the other literals are assumed

to be false.

Another source of assumptions is if-expressions. That is, when we are rewrit-

ing (if a b c), we may assume a is true while we rewrite b, and that a is false while

we rewrite c.

267

The fundamental operations of an assumptions system are to assume new

facts, to identify when contradictory assumptions have been made, and to sim-

plify terms using the facts which have been assumed.

How are these operations used by our rewriter? Suppose we want to simplify

some goal clause, C = [t1, . . . , tn], by rewriting the literal ti. Before rewriting begins,

we create an empty assumptions structure, then extend it by assuming (not tj) for

each j 6= i. If some contradiction is observed, then we can use the contradiction to

immediately prove the clause and there will be no need to rewrite ti. Otherwise, the

rewriter begins simplifying ti; as it works, it encounters various subterms which it

asks the assumptions system to simplify. Ideally, the assumptions system will know

something about these terms, and will produce simpler replacement terms which will

help the rewriter to make more progress.

Probably the simplest way to record assumptions would be to put them in a

list: assume could just cons the new assumption into the list, and simplify could

just reduce subterms to t when they are found in the list. But such a system would

not be very helpful to the rewriter. For instance, suppose we knew the subsetp

function was reflexive, which might be expressed as the rewrite rule “terms matching

(subsetp x x) may be rewritten to t.” Suppose further that we are attempting to

rewrite (subsetp a b) after assuming (equal a b) is true. Now, since (equal a b)

does not occur as a subterm of (subsetp a b), the rewriter’s requests to simplify

subterms would always fail, and we would not see that the rule could be applied.

Instead, our assumptions system uses simple disjoined-set structures to track

equal- and iff-equivalences which have been assumed and inferred. For instance, if

we begin by assuming (equal a b), we will create an equality set, {a, b}. If we then

additionally assume (equal b c), this set will be extended to {a, b, c}. This way,

when our assumptions system is asked to simplify any of a, b, or c, it can produce a

268

distinguished representative for this set, solving the problem described above.

It is easy to imagine more sophisticated assumptions systems that infer more

information and employ other kinds of forward-direction reasoning. For instance, in

the ACL2 theorem prover, an extensible type-reasoning algorithm keeps track of facts

such as “a is a positive natural” or “b cannot be a cons,” and these observations can

be used to simplify terms such as (natp a) to t and (car b) to nil. ACL2 also

builds tables of inequalities for arithmetic reasoning, and allows the user to provide

forward-chaining rules that are used to make additional inferences before rewriting

begins.

But forward-direction reasoning takes time and may not produce useful infer-

ences, so the trick is to strike a good balance. Anecdotally, early in this project we

decided to eliminate the forward-chaining rules from our ACL2 proofs; this was not

difficult and led to an approximately 1
3 improvement in the speed of some proofs. Of

course, this is only one data point and we do not intend to claim that such rules are

never useful. Our approach is probably overly minimalist, but we have found it to be

adequate and not difficult to work with.

8.1 Term Ordering

A major function of our assumptions system is to simplify equivalent terms

into some canonical form. We choose the distinguished member for each equivalence

set based upon whichever term is simplest according to an ordering on terms.

To begin with, we introduce a total order over all objects, which we name <<

after a similar function that Manolios and Kaufmann [61] implemented for ACL2.

Since we already have an ordering of the natural numbers, <, and an ordering of the

symbols, symbol-<, to implement << we simply say naturals come before symbols,

269

symbols come before conses, and conses are ordered first by their cars, then by their

cdrs.

While straightforward, << is not a very good ordering for choosing “simple”

terms. For instance, constants intuitively seem to be simpler than variables, yet <<

reverses this, e.g., 0 is larger than x since we represent x as a symbol and represent 0

as (quote . (0 . nil)). Lexicographic ordering can also lead to oddities such as

(f a (f b c)) being considered simpler than (f b c).

Our term order, logic.term-<, is taken with only slight modification from

ACL2’s function term-order. First, we say terms with fewer variables are smaller.

When the number of variables is the same, we say terms with fewer total function

applications and lambda abbreviations are smaller. When this, too, is the same, we

count up the total size of all constants in the term, where

size(x) =

1 if x is a symbol
x if x is a natural number, and
1 + size(a) + size(b) if x is (a . b),

and say that terms with a lower total size are smaller. Finally, if even this is the

same, we just use << to determine which term is smaller. In practice, logic.term-<

seems to work well.

8.2 Hypboxes

Our assumptions system stores two kinds of information: (1) the actual terms

which have been assumed, which we will call the hyps, and (2) the sets of equivalences

which have been inferred from these hyps. Roughly speaking, when our assumptions

system claims some term, a, is equivalent to a simpler term, b, we will need to be

able to prove hyps → (equiv a b) = t, where equiv is either equal or iff.

How are the hyps recorded? For simplicity, we would have preferred to use a

270

single list of the terms we had assumed, and that is how we started out. But later,

when we were using the fully expansive version of our prover to rewrite clauses, we

found that this led proofs to become too large. (See Section 9.11 for details). This led

us to adopt a slightly more complex structure, which we call a hypbox. Each hypbox

contains two lists of terms, called left and right, which are together used to store

the assumptions. Instead of a single assume operation, we have assume-left and

assume-right, which add the new assumption to the suggested list. When we are

rewriting ti in the clause [t1, . . . tn], we assume-left t1, . . . , ti−1 and assume-right

ti+1, . . . , tn. This separation allows us to stitch in the new ti
′ in far fewer proof steps.

It is also convenient to store the negation of each assumption, rather than

the assumption itself. After all, before we begin rewriting ti, we need to assume

t1, . . . , ti−1, ti+1, . . . , tn are all false, so the negated assumptions are readily available

in the clause. Further, when we are interested in using assumptions to simplify a

term, we want to establish, e.g., hyps → (equiv a b) = t, but this is really ¬hyp1 ∨

· · · ∨ ¬hypn ∨ (equiv a b) = t.

Given a non-empty hypbox, we define the hypbox formula as follows. Let the

negated hypotheses in the left list be [l1, . . . , ln] and in the right list be [r1, . . . , rm].

Furthermore, let L1, . . . , Ln be the term formulas for the li, and let R1, . . . , Rm simi-

larly be the term formulas for the ri. Then, the hypbox formula is L1...n ∨R1...m. To

justify our assumptions system, our proof obligation is to show that whenever it is

used to simplify some term a to b, then P ∨ (equiv a b) = t is provable,where P is

the hypbox formula.

8.3 Equivalence Traces

We implement two versions of our assumptions system, one which is “slow” and

one which is “fast.” The main difference between the two is how the sets of equivalent

271

terms are represented. The slow version remembers how its inferences were made, and

this information can be used to justify any claim it makes with a fully expansive proof.

The fast version omits this information, which makes it somewhat more efficient, but

as a result its claims cannot be directly justified. To justify the fast version, we will

prove (Section 8.6) it only makes the same claims as the slow version.

But for now, we turn our attention to the slow assumptions system. Here, each

equivalence we have inferred is represented as an equivalence trace. Each equivalence

trace is an aggregate of five components,

– method, a symbol describing what kind of trace this is,

– iffp, a flag indicating if the equivalence is iff or equal,

– lhs, a term, called the left-hand side,

– rhs, a term, called the right-hand side, which must be larger than the lhs ac-

cording to the term order, and

– subtraces, which are recursively a list of any equivalence traces needed to justify

this trace (e.g., for transitivity).

We say the conclusion of an equivalence trace is the term (equiv lhs rhs),

where equiv is either equal or iff, depending upon the value of iffp. We think of

each trace as an assertion that this conclusion holds when the assumption system’s

hypotheses are satisfied. That is, each well-formed trace claims that the formula

P ∨ (equiv lhs rhs) = t is provable, where P is the hypbox formula. It is sometimes

useful to ignore the details of the term order, so when we say that a trace equates a

and b, what we mean is that its lhs is the smaller and its rhs is the greater of these

terms.

272

When a new hypothesis, hyp, is added to our assumptions system via assume-

left or assume-right, we construct equivalence traces that (1) capture the direct

meaning of the new hypothesis, and (2) connect these new traces with any previously

constructed traces. For example, suppose we have previously assumed the hypothesis

(equal a b), and are now assuming (equal b c). We begin by constructing a trace

that captures the meaning of this new hypothesis, i.e., which equates b and c. We

then combine this new trace with the previously constructed traces to build a new

trace that equates a with c.

To capture the direct meaning of a new assumption, hyp, we attempt to con-

struct four kinds of equivalence traces.

– Primary equivalence traces. If hyp is of the form (equal a b), we can usually

construct a Primary equivalence trace which equates a and b. The exception is

when a and b are the same term: the term order requirement does not allow

a trace to have the same lhs and rhs. The method of a well-formed Primary

equivalence trace is the symbol PRIMARY, there are no subtraces, and the iffp

flag is NIL since this trace represents an equality. The lhs and rhs of the trace

are respectively the smaller and larger of a and b, per the term order.

– Secondary equivalence traces. If hyp has the form (not a), we can usually

construct a Secondary equivalence trace that equates a with nil. The exception

is when a happens to be nil, in which case we again cannot construct the trace

due to the term order. The method of a well-formed Secondary equivalence

trace is the symbol SECONDARY. There are no subtraces, iffp is NIL, and the

lhs and rhs of the trace are respectively the smaller and larger a and nil, per

the term order.

273

– Direct Iff equivalence traces. If hyp has the form (iff a b), we can usually

construct a Direct Iff equivalence trace that captures the Boolean equivalence

of a and b. The exception is when a and b are the same term. The method of a

well-formed Direct Iff equivalence trace is DIRECT-IFF. There are no subtraces,

iffp is T, and the lhs and rhs are the smaller and larger of a and b.

– Negative Iff equivalence traces. We can usually construct a Negative Iff equiv-

alence trace that shows hyp is non-nil. The method of a well-formed Negative

Iff equivalence trace is NEGATIVE-IFF. There are no subtraces, iffp is T, and

the lhs and rhs are the smaller and larger of hyp and t. In practice, we do

not construct Negative Iff equivalence traces when hyp is any non-nil constant,

since they are not useful assumptions.

If we can generate a Primary or Secondary equivalence trace from hyp, then

we can also construct a “weaker” version of this trace. For x to be a well-formed

Weakening equivalence trace, its method must be WEAKEN and it must have exactly

one subtrace, say y. The iff of x must be T while the iffp of y is NIL, and the

lhs and rhs of x must be the lhs and rhs from y, respectively. In other words,

a Weakening trace allows us to conclude (iff lhs rhs) from another trace which

concludes (equal lhs rhs).

The above traces allow us to capture the meaning of the new hypothesis,

but we would also like to construct traces which connect the new hypothesis with

our previous assumptions. That is, suppose we have previously constructed a trace

which concludes (equal a b). If, when we assume a new hypothesis, we construct a

Primary equivalence trace that concludes (equal b c), we would like to additionally

create a new equivalence trace that establishes (equal a c).

274

Toward this end, we have three kinds of Transitivity equivalence traces that

may be used to combine compatible equivalence traces. Written in an inference-rule

style, these traces might be described as follows.

Trans1 Trans2 Trans3
(equiv1 a b)
(equiv1 b c)
(equiv1 a c)

(equiv1 a b)
(equiv1 a c)
(equiv1 b c)

(equiv1 a c)
(equiv1 b c)
(equiv1 a b)

More precisely, for x to be a well-formed Trans1 equivalence trace, its method

must be TRANS1, and it must have two subtraces, say y and z. The iffp fields of

x, y, and z must all agree. The lhs of x must be the lhs of y; the rhs of x must be

the rhs of z, and the rhs of y must be the lhs of z. The requirements for the other

transitivity traces are analogous.

Equivalence traces allow us to justify the inferences made by our assumptions

system. Each trace serves as a high-level sketch that explains how its formula can be

proven. It is straightforward to prove the formula for any Primary, Secondary, Direct

Iff, or Negative Iff trace. As an example, we now show how this may be done for

Primary equivalence traces.

Suppose a and b are different terms and we are given (equal a b) as a hy-

pothesis. This means that (not (equal a b)) is among the left or right terms of

the hypbox. We will show that P ∨ (equal lhs rhs) = t is provable, where P is the

hypbox formula, lhs is the lesser of a and b according to the term order, and rhs is

the greater of a and b. As a lemma, the following theorem about not is helpful.

Formal Theorem 45. Not when nil

x 6= nil ∨ (not x) = t

Proof.

x 6= nil ∨ (if x y z) = z Axiom if when nil

275

x 6= nil ∨ (if x nil t) = t Instantiation (*1)
(not x) = (if x nil t) Definition of not
x 6= nil ∨ (not x) = (if x nil t) Expansion
x 6= nil ∨ (not x) = t Dj. trans. = *1

The main part of the proof is to show that either the term in the hypbox is

true, or that the conclusion of the trace holds. In the case of Primary equivalence

traces, we may carry out this derivation as follows.

x 6= nil ∨ (not x) = t Th. not when nil
(equal a b) 6= nil ∨ (not (equal a b)) = t Instantiation
(equal a b) 6= nil ∨ (not (equal a b)) 6= nil Dj. not nil from t
(not (equal a b)) 6= nil ∨ (equal a b) 6= nil Commute or
(not (equal a b)) 6= nil ∨ (equal a b) = t Dj. equal t from not nil
(not (equal a b)) 6= nil ∨ (equal lhs rhs) = t [*] See below

[*] This last step depends upon the order of a and b: if a is smaller than b in

the term order, we can just reuse the proof from the previous line; otherwise, lhs is b

and rhs is a, and we can derive the following formula via disjoined commute equal.

Now, to finish the proof, we just need to expand the above with our other

hypotheses. Recall that (not (equal a b)) is either in the left or right side of the

hypbox. If the other side is empty, then by multi assoc expansion we can obtain our

goal. Otherwise, if the hypothesis is in the left side and the right side is non-empty,

we have:

L1...n ∨ (equal lhs rhs) = t Multi-assoc expansion
P ∨ (equal lhs rhs) = t Disjoined left expansion

Otherwise, the hypothesis is on the right side and the left side is non-empty,

and we have:

R1...m ∨ (equal lhs rhs) = t Multi-assoc expansion
L1...n ∨R1...m ∨ (equal lhs rhs) = t Expansion
P ∨ (equal lhs rhs) = t Associativity

276

In the case of Trans1, Trans2, Trans3, and Weakening traces, it is quite

straightforward to derive the formula for the trace if we are given proofs of the for-

mulas for the subtraces, using our rules about iff and equal. Hence, by induction,

we may derive the formula for any well-formed equivalence trace. We introduce a

function, the “trace compiler,” that can construct the fully expansive proof for any

valid trace.

Traces are a useful abstraction which separate the process of making assump-

tions from justifying them. That is, when we implement the assumptions system, we

only need to ensure that all of the traces we create are valid. This allows us to work

at the level of traces instead of proofs.

We can also use traces to prove clauses which contain contradictory assump-

tions. We say an equivalence trace is contradictory when it concludes

– (equal c1 c2), where c1 and c2 are distinct constants,

– (equal a (not a)),

– (iff nil t), which per the term order also addresses (iff t nil), or

– (iff a (not a)).

Given a contradictory equivalence trace, we can prove the hypbox formula.

For instance, let P be the hypbox formula and suppose we have a contradictory

equivalence trace of the form (equal c1 c2), where c1 and c2 are distinct constants.

To begin, we may prove the formula for this trace, namely P ∨ (equal c1 c2) = t,

using the trace compiler. Now, to derive P ,

P ∨ (equal c1 c2) = t Trace compiler
(equal c1 c2) = t ∨ P Commute or (*1)
(equal c1 c2) = nil Base evaluation
(equal c1 c2) 6= t Not t from nil
P Modus ponens 2, *1

277

For the other kinds of contradictory equivalence traces, the approach is similar

except for details of showing that the conclusion is false, viz. the base evaluation step,

above.

8.4 Equivalence Databases

We organize our equivalence traces into two simple disjoined-set (a.k.a. union-

find) structures—one for equal-equivalences, and one for iff-equivalences. An equiv-

alence set is an aggregate of three components,

– iffp, a flag indicating the equivalence for this set,

– head, the term that is the distinguished member of this set, and

– tail, a list of iffp-compatible equivalence traces, whose every lhs is the same as

head, and whose rhses are distinct.

We think of equivalence sets as sets of terms: the terms in the set are its head, and

also the rhs of every trace in its tail. By the term order, the terms in each equivalence

set are unique.

Equivalence sets are grouped into equivalence databases, which are aggregates

of three components,

– equalsets, a list of equal equivalence sets,

– iffsets, a list of iff equivalence sets, and

– contradiction, which is nil, or a contradictory equivalence trace,

where the terms in the equalsets are mutually disjoint (i.e., no term occurs in more

than one equalset), and similarly the terms in the iffsets are mutually disjoint.

278

Using such a database is straightforward. Our use operation takes as inputs

x, the term the rewriter would like to have simplified; iffp, the equivalence that must

be preserved; and db, the database to use. We look through whichever of equalsets

or iffsets is appropriate for iffp. If we can find x in the tail of some set, we return the

trace which establishes (equiv h x), where h is the head of the set. The rewriter,

then, will replace x with h, which is the “simplest” term we know is equivalent to

x. If every trace in the database is valid, the returned trace is also valid and can be

compiled into a proof of its claim.

Constructing these databases is more involved. The initial equivalence data-

base has no equalsets, no iffsets, and no contradiction. Each time we assume a new

hypothesis, we construct the various equivalence traces that are appropriate for the

assumption and add them to the database. Adding these traces may also lead us

to infer new transitivity and weakening traces, which we also add. This can get

somewhat tricky because of all the invariants being maintained, so we make use of

some utility routines.

1. update-head(t, x).

Given an equivalence set x whose head is h, and an iffp-compatible equivalence

trace, t, that concludes (equiv lhs h), update-head creates a new set, x′, that has

all of the terms in x and has lhs as its new head. Note that by the term order, lhs is

smaller than h.

2. maybe-extend(t, x).

Given an equivalence set x whose head is h, and an iffp-compatible equivalence

trace, t, that concludes (equiv lhs rhs), maybe-extend produces a new set, x′,

which adds the information in t to x if it makes sense to do so. That is, if both lhs

and rhs are in x, then their equivalence is “already known” by the set and x′ is simply

279

x. If neither term is found, then this equivalence is “not relevant” to the set, and

again x′ is simply x. The interesting case is when exactly one of lhs or rhs is found,

and here we add the missing term to x′.

3. join-sets(t, x, y).

Given two mutually disjoint, iffp-compatible equivalence sets, x and y, and an

iffp-compatible equivalence trace, t, that concludes (equiv lhs rhs), where lhs is in

x and rhs is in y, join-sets produces a new equivalence set, n, which contains all of

the members of x and y.

4. extend-sets(t, x).

Given a list of iffp-compatible, mutually disjoint equivalence sets, x, and an

iffp-compatible trace, t, that concludes (equiv lhs rhs), extend-sets creates a new

list of equivalence sets, x′, which extend x with the information in t.

5. extend-db(nhyp, db, primaryp, secondaryp, directp, negativep).

Given a negated hypothesis, nhyp, and an equivalence database, db, and four

flags primaryp, secondaryp, directp, negativep which control the kinds of traces to

create, extend-db creates a new database by adding the traces which can be inferred

from this hypothesis.

The flags allow us to control the kinds of inferences that are made from the

hypothesis. For instance, if primaryp is nil, then we will not try to create any

primary equivalence traces from nhyp.

If the flags allow it, we first attempt to construct a primary and a secondary

trace from nhyp. When this is successful, we use extend-sets to add the new traces

to the equalsets; we also use weakening to produce iff-based versions of these traces

which we add to the iffsets, again via extend-sets. Next, we attempt to construct

280

direct iff and negative iff traces from nhyp, and add them to the iffsets. Finally, when

no contradiction has been found, we may sweep through the new equivalence sets,

looking for contradictory traces, and appropriately update the database’s contradic-

tion field.

Constructing an equivalence database is not particularly cheap. The extend-

db operation is linear in the total size of the equalsets and iffsets, but since it must be

called for each assumption the overall cost of constructing the database is quadratic.

This has been adequate for our project, but should probably be improved upon. In

particular, it seems wasteful to scan for contradictions every time a new assumption

is added, and it should be straightforward to defer that until all clause assumptions

have been added. It is probably also unnecessary to replicate primary and secondary

traces in both the equalsets and iffsets, and this might be avoided through a more

advanced use operation.

8.5 Assumptions Structures

We group the hypbox and the corresponding equivalence database into an

assumptions structure for the rewriter to interface with. Each assumptions structure

is an aggregate of the following components:

– hypbox, the hypbox for the actual terms that have been assumed,

– eqdatabase, the equivalence database we have constructed,

– ctrl, an assumptions control structure, and

– trueterms, a list of terms used heuristically in free-variable matching,

where every trace in the eqdatabase is valid with respect to the hypbox.

281

We have already covered hypboxes and equivalence databases. Assumptions

control structures are simple aggregates of the primaryp, secondaryp, directp, and

negativep flags which are passed to extend-db. We had hoped this level of control

would occasionally be useful as a way to reduce the amount of time needed to make

assumptions, but in practice it seems that our rewriter is not very effective without all

four kinds of assumptions, so we rarely use this feature. This kind of control might be

more useful in a richer, ACL2-like assumptions system as a way to sometimes disable

type reasoning, arithmetic reasoning, or forward-chaining rules.

The trueterms are a list of the terms which we have inferred to be non-nil.

When our rewriter tries to use a conditional rewrite rule whose hypotheses contain

free variables, this list of terms is used heuristically to try to identify terms that might

satisfy the hypotheses. This is only incidental to the rest of the assumptions system,

and is covered in Section 9.5.

Bringing it all together, suppose we are using the fully expansive version of

our rewriter and we would like to simplify the clause [t1, . . . , tn] by rewriting the

literal ti. Before rewriting begins, we use the function rw.empty-assms to construct

an initial assumptions structure which has an empty hypbox, an empty eqdatabase,

no trueterms, and a ctrl structure which is supplied (usually implicitly) by the user.

A trivial but important fact is that given any valid ctrl structure (recognized by

rw.assmctrlp), this function produces a valid assumptions structure (recognized by

rw.assmsp). In our ACL2 proof sketch, this is expressed as follows.

ACL2 Code
(defthm rw.assmsp-of-rw.empty-assms

(implies (rw.assmctrlp ctrl)
(rw.assmsp (rw.empty-assms ctrl))))

282

We then add the negations of the literals to the left of ti via assume-left, and

similarly we add the negations of the literals to the right via assume-right. Both

assume-left and assume-right take, as inputs, the new negated hypothesis to add

and the current assumptions structure. They return a new assumptions structure,

where the hypbox is extended with the hypothesis (either on the left or right, as

appropriate), the equivalence database is updated via extend-db, the ctrl remains

the same, and the trueterms are updated to agree with the equivalence database.

For correctness, our goal is to show that assume-left and assume-right

produce valid assumptions structures when given a valid assumptions structure as

input. One lemma toward this is that if we are given any equivalence trace which is

valid in some hypbox, then the trace is still valid in any extended hypbox. Another

key lemma is that if all of the traces in the database are valid with respect to a

hypbox, and the new nhyp being added to the database via extend-db is among

the left or right terms in the hypbox, then all of the traces in the resulting, extended

database are also valid. In our ACL2 proof sketch, these theorems are as follows.

ACL2 Code
(defthm rw.assmsp-of-rw.assume-left

(implies (and (logic.termp nhyp)
(rw.assmsp assms))

(rw.assmsp (rw.assume-left nhyp assms))))

(defthm rw.assmsp-of-rw.assume-right
(implies (and (logic.termp nhyp)

(rw.assmsp assms))
(rw.assmsp (rw.assume-right nhyp assms))))

Our simplify operation is named rw.try-assms, and takes three arguments:

the assumptions structure to use, the term to simplify, and a flag indicating whether

283

equal- or iff-equivalence should be maintained. It either returns the simplified

version of the term, or nil when no simplification is possible.

To justify the use of rw.try-assms, we introduce rw.try-assms-bldr, which

takes the same arguments. When rw.try-assms is successful, rw.try-assms-bldr

can produce a proof that P ∨(equiv term term′) = t, where P is the formula for the

hypbox. To construct this proof, we simply compile the trace found in the database

and then commute the equivalence.

Recall from page 154 that when we introduce proof-building functions, we

prove that it is (1) “well-typed”—it is a valid appeal, (2) “relevant”—it has the

desired conclusion, and (3) “faithful”—it is accepted by logic.proofp. Below, we

show the ACL2 statements of these theorems for rw.try-assms-bldr.

ACL2 Code
(defthm logic.appealp-of-rw.try-assms-bldr

(implies (and (rw.try-assms assms term iffp)
(logic.termp term)
(rw.assmsp assms))

(logic.appealp (rw.try-assms-bldr assms term iffp))))

(defthm logic.conclusion-of-rw.try-assms-bldr
(implies
(and (rw.try-assms assms term iffp)

(logic.termp term)
(rw.assmsp assms))

(equal (logic.conclusion (rw.try-assms-bldr assms term iffp))
(logic.por
(rw.hypbox-formula (rw.assms->hypbox assms))
(logic.pequal (logic.function

(if iffp ’iff ’equal)
(list term

(rw.try-assms assms term iffp)))
’’t)))))

284

(defthm logic.proofp-of-rw.try-assms-bldr
(implies (and (rw.try-assms assms term iffp)

(logic.termp term)
(rw.assmsp assms)
(rw.assms-atblp assms atbl)
(logic.term-atblp term atbl)
(equal (cdr (lookup ’not atbl)) 1)
(equal (cdr (lookup ’iff atbl)) 2)
(equal (cdr (lookup ’equal atbl)) 2)
... various formulas are thms ...
... various formulas are axioms ...)

(logic.proofp (rw.try-assms-bldr assms term iffp)
axioms thms atbl)))

In the faithfulness theorem, the predicate rw.assms-atblp is used to ensure

that the terms throughout the traces are valid with respect to the arity table. The

“various formulas” which we omit are the simple axioms and theorems such as the

reflexivity and commutativity of equal that are needed by the builder functions that

rw.try-assms-bldr calls upon, as described in Section 6.1.

Together, these lemmas establish that it is legitimate to use rw.try-assms to

simplify terms as long as we know we are using a valid assumptions structure. As

we will see in the next chapter, our fully expansive rewriter begins with an empty

assumptions structure (which is valid) and extends it only via rw.assume-left and

rw.assume-right (which are validity preserving). Accordingly, it can justify its uses

of rw.try-assms by calling upon rw.try-assms-bldr.

8.6 Fast Assumptions

Constructing an equivalence trace involves consing its components together

into a structure. This overhead may not seem too bad since only four conses are

required to construct each trace. But we may need to build many equivalence traces

285

to construct an assumptions system, and we construct an assumptions system before

rewriting each literal in the clause, so this cost multiplies. To avoid this overhead, we

develop and verify a “fast” version of our assumptions system which does away with

these traces.

Recall that an ordinary, “slow” equivalence set is an aggregate of three compo-

nents, iffp, head, and tail, where the head is a term and the tail is a list of equivalence

traces. A fast equivalence set is also such an aggregate, except that the tail is just a

list of terms. The basic idea is that we only want to record the terms which would

have been in the rhs of each trace.

Similarly, recall that an ordinary equivalence database is an aggregate of

equalsets, iffsets, and contradiction, where the equalsets and iffsets are lists of equiv-

alence sets, and contradiction is either nil or a contradictory equivalence trace. A

fast equivalence database is also such an aggregate, except that fast equivalence sets

are used and the contradiction field is a Boolean flag that indicates whether a con-

tradiction has been identified.

Finally, an ordinary assumptions structure is an aggregate of a hypbox, eq-

database, ctrl, and trueterms. A fast assumptions structure contains the same com-

ponents, except that the eqdatabase is a fast equivalence database.

To implement our fast assumptions system, we provide new analogues of our

various routines for extending equivalence sets and databases that operate on these

stripped down structures. To verify the fast version, our basic approach is to show

these routines mirror the operation of the slow versions, which we have already jus-

tified.

We begin by developing three imaging functions to relate our fast and slow

structures. Given a slow equivalence set, x, set-image(x) creates the corresponding

286

fast equivalence set: the iffp and head of set-image(x) are the same as the iffp and

head for x, and the tail of set-image(x) is the list of the rhses of the tail of x. Given

a slow equivalence database, db, db-image(db), creates the corresponding fast equiv-

alence database: the equalsets and iffsets of db-image(db) are formed by taking the

set-image of the equalsets and iffsets for db, and the contradiction of db-image(db)

is t when db has a contradiction, and nil otherwise. Finally, given a slow assumptions

structure, x, assm-image(x) creates the corresponding fast assumptions structure.

The eqdatabase of assm-image(x) is the db-image of the eqdatabase of x, while the

hypbox, ctrl, and trueterms of assm-image(x) are just copied from x.

Next, we show that the fast version of each operation is “correct” with respect

to this imaging function. Since we write the fast operations by copying the slow

versions and making the appropriate updates, these proofs are quite straightforward.

1. fast-update-head(h, x).

Given a fast equivalence set x and a new term, h, which is smaller than the

head of x, fast-update-head creates a new equivalence set, n, whose head is h and

whose tail is formed by adding the head of x into its tail. Given valid inputs,

set-image(update-head(t, x)) =

fast-update-head(lhs(t), set-image(x)).

2. fast-maybe-extend(l, r, x).

Given a fast equivalence set, x, and the terms l and r, fast-maybe-extend

creates a new fast equivalence set which reflects the equivalence of l and r if this fact

is relevant to x, as in maybe-extend. Given valid inputs,

set-image(maybe-extend(t, x)) =

fast-maybe-extend(lhs(t),rhs(t), set-image(x)).

287

3. fast-join-sets(x, y).

Given two fast equivalence sets, x and y, fast-join-sets creates a new fast

equivalence set containing all of the terms in x and y and with the appropriate head.

Given valid inputs,

set-image(join-sets(t, x, y)) =

fast-join-sets(set-image(x), set-image(y)).

4. fast-extend-sets(l, r, iffp, x).

Given a list of fast equivalence sets, x, the terms l and r, and the Boolean

flag iffp, fast-extend-sets produces a new list of fast equivalence sets where the

equivalence of l and r is known. The iffp flag is needed in case neither l nor r are

present, since in this case we need to create a new fast equivalence set relating l and

r, and we need to know what to use for the iffp of this new set. Given valid inputs,

set-list-image(extend-sets(t, x)) =

fast-extend-sets(lhs(t),rhs(t), iffp(t), set-list-image(x)),

where set-list-image(x) just applies set-image to every member of a list of equiv-

alence sets.

5. fast-extend-db(nhyp, db, primaryp, secondaryp, directp, negativep).

Given a fast equivalence database, db, a negated hypothesis nhyp, and the vari-

ous flags as in extend-db, fast-extend-db creates a new fast equivalence database

which extends db with the assumptions which can be made from this hypothesis.

Given valid inputs,

db-image(extend-db(nhyp, db, primaryp, secondaryp, directp, negativep)) =

fast-extend-db(nhyp,db-image(db), primaryp, secondaryp, directp, negativep).

288

6. fast-empty-assms(ctrl).

Given an assumptions control structure, ctrl, fast-empty-assms creates an

empty fast assumptions structure, and we have

assm-image(empty-assms(ctrl)) = fast-empty-assms(ctrl).

7. fast-assume-{left,right}(nhyp, assms).

Given a negated hypothesis, nhyp, and a fast assumptions system, assms,

fast-assume-left and fast-assume-right add the hypothesis to the appropriate

side of the hypbox, extend the database by calling fast-extend-db, and update the

trueterms as appropriate. Given valid inputs,

assm-image(assume-{left,right}(nhyp, assms)) =

fast-assume-{left,right}(nhyp,assm-image(assms)).

8. fast-try-assms(assms, term, iffp).

Given a fast assumptions system, a term to simplify, and a flag indicating

whether equal- or iff-equivalence should be maintained, fast-try-assms returns

either a simplified term or nil to indicate failure. Given valid inputs,

try-assms(assms, term, iffp) =

fast-try-assms(assm-image(assms), term, iffp).

We have slow and fast versions of our rewriter which are analogous to our slow

and fast assumptions systems. The slow rewriter uses the slow assumptions system

and keeps other information necessary to produce fully expansive proofs to justify

the rewriting it performs, while the fast rewriter uses the fast assumptions system

and also cannot justify the other steps it takes. Accordingly, the correspondence of

289

our fast and slow assumptions system is an important lemma in relating the fast and

slow rewriters.

290

Chapter 9

Rewriting

Rewriting with lemmas is the driving force in our style of theorem proving.

Our rewriter uses the assumptions system we developed in Chapter 8 for keeping

track of the equivalences which are known, and also uses the evaluator we developed

in Section 6.4 to simplify ground terms.

More interestingly, it can apply rewrite rules. Each rewrite rule has some

hypotheses and a conclusion, typically an equality, which is used to direct the re-

placement of one term with another. For rewriting to be justified, each rewrite rule

must correspond to some theorem. Also, the replacement may only be carried out

after the hypotheses are shown to be true. Our rewriter uses backchaining (recursive

rewriting) to attempt to relieve hypotheses. Through his choice of rules, the user can

guide the rewriter and “train” it to reason about the functions in his domain.

Our rewriter is quite complicated. The reader is reminded that we ultimately

justify its use, both with ACL2 and, more importantly, with the core program devel-

oped in Chapter 4.

9.1 Rewrite Traces

As in our assumptions system, we have two versions of our rewriter, one which

is “slow” but can produce a trace that explains how the term was rewritten, and

one which is “fast” but cannot justify its work. To justify the fast version, we will

establish (Section 9.10) that it produces the same results as the slow version. But

291

until then, we will focus on the slow rewriter.

To justify the use of our rewriter, our basic approach is quite similar to our

slow assumptions system. When our rewriter simplifies some term x to x′, it produces

a rewrite trace that provides a high-level explanation of how the rewriting was per-

formed. For instance, one step of a trace might say, “the subterm y was rewritten to

y′ by applying the rewrite rule r, whose hypotheses were relieved as described by the

following subtraces.” These traces allow us to address the justification of our rewriter

in two phases: first we show how to prove the claim made by any well-formed trace,

then we show the rewriter always produces well-formed traces.

This decoupling has allowed us to modify how our rewriter works and imple-

ment many of its features without substantially needing to reconsider its justification.

We wish to stress this point. When implementing a rewriter, one must make a num-

ber of decisions about the order in which various simplifications are attempted. For

instance, upon encountering a new term, should we first (1) recursively try to rewrite

its subterms, (2) try to use the assumptions system, (3) try to evaluate it, or (4) try

to apply some rewrite rules? It is difficult to tell which strategy will be most effective

ahead of time, but regardless of which order is finally settled upon, the basic steps

are the same. Traces allow us to justify each kind of step separately, so a large part

of the overall proof can be done without any regard to the order in which rewriting

steps are tried.

Traces also lead to certain efficiencies when building fully expansive proofs. In

conditional rewriters, rules may only be applied when their hypotheses can be relieved,

and relieving the hypotheses may recursively require a lot of rewriting. When we fail

to apply some rewrite rule because we cannot relieve some hypothesis, this failed

attempt will be left out of the final trace. Because of this, when we construct a proof

from the trace, we only consider “useful” steps. This is much like Boulton’s [10]

292

technique of separating proof search from construction in LCF theorem provers.

Of course, the end-user of our system does not need to worry about such

efficiencies since he can simply use our fast, verified rewriter, which does not build

these traces. But when we are working to transform our Milawa proofs into a form

that logic.proofp can check, we make extensive use of our slow rewriter, so its

efficiency is important.

Rewrite traces are similar to equivalence traces. Each rewrite trace is an

aggregate of the following components:

– method, a symbol explaining what kind of trace this is,

– hypbox, the assumptions the rewrite is occurring under,

– lhs, the term we rewrote (e.g., x),

– rhs, the term we produced (e.g., x′),

– iffp, indicating whether an equal- or iff-equivalence is maintained,

– subtraces, which are (recursively) a list of rewrite traces needed to justify this

trace, and

– extras, which hold any additional information needed to justify this step.

Associated with each trace is a formula that conveys the logical meaning of

the trace. This formula is built from the hypbox, iffp, lhs, and rhs of the given trace,

and is called the trace formula. If the hypbox of the trace is empty, the trace formula

is (equiv lhs rhs) = t, where equiv is either equal or iff, per the iffp field of the

trace. Otherwise, the trace formula is P∨(equiv lhs rhs) = t, where P is the hypbox

formula.

293

We denote a generic trace formula by [assms →] lhs ≡ rhs. When describing

a trace where iffp must be t, we may write [assms →] (iff lhs rhs), and similarly

when iffp must be nil, we may write [assms →] (equal lhs rhs). Often we will use

a trace formula to suggest the traces we build, leaving the reader to fill in the rest of

the trace by context, intuition, or clarifications in the surrounding text.

Each call of the slow rewriter must produce a trace, and this trace is built

partly from the arguments to the rewriter and partly from the actions taken inter-

nally by the rewriter. Among the relevant arguments of the rewriter, used implicitly

below in the description of the traces generated, are the term to be rewritten, x , the

assumptions system, assms, and more specifically the hypbox for that assumptions

system, and an iffp flag indicating which sense of equivalence is to be maintained by

that call of the rewriter.

When the rewriter cannot (or, for whatever reason, does not) further simplify

its input term, it may produce a Failure trace. We use an inference-rule style notation

to describe the construction of traces. It should be understood that the method of

the returned trace is a symbol indicating that this is a Failure trace, and that the

subtraces and extras of the trace are empty.

Failure Trace

[assms →] x ≡ x

When the rewriter encounters a ground term, it may attempt to evaluate it to

produce a constant. If this succeeds, the rewriter may construct an Evaluation trace.

Here, x ′ is constructed by (1) calling upon the evaluator from Section 6.4, then (2)

canonicalizing the result to t or nil if we are only maintaining iff-equivalence. The

stack depth used for evaluation is recorded in the extras of the trace.

294

Evaluation Trace
(Justified by evaluation)

[assms →] x ≡ x ′

One of the arguments to the rewriter is an assumptions structure, and the

rewriter may use assumptions to simplify a term. When this is successful, we may

construct an Assumptions trace. Here, x ′ is the result of simplifying x using the

assumptions system. So that we may later justify this simplification, we record the

equivalence trace we have used in the extras of the rewrite trace.

Assumptions Trace
(Justified by assumptions)

[assms →] lhs ≡ rhs

Transitivity traces are the basic mechanism for combining rewrite steps. For

instance, if we use assumptions to reduce x to x′, then use evaluation to simplify x′

to t, we can combine these steps with a Transitivity trace which concludes x is t. It

should be understood that the traces shown above the line are the subtraces of the

generated trace.

Transitivity Trace
[assms →] x ≡ y
[assms →] y ≡ z
[assms →] x ≡ z

To rewrite functions applications and lambda abbreviations, it is generally

necessary to (recursively) simplify each argument. This may be done with an Equiv

By Args or a Lambda Equiv By Args trace.

Equiv by Args Trace
[assms →] a1 = a1

′

...
[assms →] an = an

′

[assms →] (f a1 . . . an) ≡ (f a1
′ . . . an

′)

295

Lambda Equiv by Args Trace
[assms →] a1 = a1

′

...
[assms →] an = an

′

[assms →] ((lambda (x1...n) β) a1...n) ≡ ((lambda (x1...n) β) a1...n
′)

Beta-Reduction traces allow us to expand away lambda abbreviations.

Beta-Reduction Trace

[assms →] ((lambda (x1 . . . xn) β) t1 . . . tn) ≡ β/[x1...n ← t1...n]

We also have a few traces to support special handling of if-expressions. One

reason for this is that when we rewrite (if x y z), we would additionally like to

assume x while rewriting y, and to assume (not x) while rewriting z. This would not

be possible using an equiv by args trace, which requires that the assumptions are the

same across all arguments. Furthermore, it is generally useful to rewrite x while only

maintaining iff-equivalence. Finally, we also prefer to rewrite if lazily—that is, we

do not want to spend any time rewriting y when x rewrites to nil, and similarly we

do not want to rewrite z when x rewrites to t.

If False Trace
[assms →] (iff x1 nil)
[assms →] z1 ≡ z2
[assms →] (if x1 y1 z1) ≡ z2

If True Trace
[assms →] (iff x1 t)
[assms →] y1 ≡ y2
[assms →] (if x1 y1 z1) ≡ y2

If General Trace
[assms →] (iff x1 x2)
x2, assms → y1 ≡ y2
(not x2), assms → z1 ≡ z2
[assms →] (if x1 y1 z1) ≡ (if x2 y2 z2)

296

Our rewriter does not apply rewrite rules to if-expressions, so we provide a

couple of additional traces which can be used to eliminate (if x y y) and to rewrite

(if x nil t) into our preferred normal form, (not x).

If Same Trace
[assms →] (iff x1 x2)
x2, assms → y ≡ w
(not x2), assms → z ≡ w
[assms →] (if x1 y z) ≡ w

If Not Trace

[assms →] (if x nil t) ≡ (not x)

Our rewriter also has a special case for rewriting not-expressions. As with

if-expressions, it is useful to know that only iff-equivalence needs to be maintained

while rewriting the argument to not.

Not Congruence Trace
[assms →] (iff x x′)
[assms →] (not x) ≡ rhs,

where

rhs =

nil if x′ is t,
t if x′ is nil, or
(not x′) otherwise.

There are also two more kinds of traces, rule application and forcing, which

we will introduce later. Along with the above, these are the only well-formed traces.

Much like equivalence traces, we can directly prove the formula for any well-formed

atomic rewrite trace, and we can prove the formula for a compound trace if we are

given proofs of the formulas for its subtraces. Hence, by induction, we can prove the

formula for any well-formed trace. We implement a function, called the rewrite trace

compiler, which does exactly this.

297

Justifying each kind of trace is routine. Failure traces can be proven via

our various reflexivity rules and expansion. Evaluation traces are proven with the

evaluation rule and our rules about iff. For Assumption traces, we just need to

compile the equivalence trace as in rw.try-assms-bldr. Equiv By Args and Lambda

Equiv By Args are trivial to justify using = by args or lambda = by args. Beta-

Reduction traces follow from the beta reduction rule, and the traces for if and not

are easy to derive using the rules and theorems we have already developed.

9.2 Controlling the Rewriter

The user guides the rewriter by selecting rules for it to apply. When we wish

to discuss a particular rewrite rule, we will present it in an ACL2-like format. For

example, the following rule says that terms matching (car (cons x y)) should be

unconditionally rewritten to x.

Rule:
(equal (car (cons x y))

x)

More sophisticated rules are conditional, and only apply when certain hy-

potheses can be established. For instance, the following is a conditional rule which

says that terms matching (cons (car x) (cdr x)) should be rewritten to x, but

only if we can first show that (consp x) holds.

Rule:
(implies (consp x)

(equal (cons (car x) (cdr x))
x))

We represent each rewrite rule as a simple aggregate of the following compo-

nents,

298

– name, a symbol which is used to identify the rule,

– type, a description of what kind of rule this is (inside-out or outside-in),

– hyps, a list of hypotheses,

– lhs, a term which is the “target” of this rule,

– rhs, a term which is the “replacement” of this rule,

– equiv, the equivalence relation being maintained (e.g., iff or equal),

– syntax, syntactic restrictions on the rule’s application (Section 9.6), and

– crithyps, a list of “critical” terms for free-variable matching (Section 9.5).

How is a rule’s type used? Rewriting can be done inside-out or outside-in. In

the former, to rewrite (f a1 . . . an), we first simplify the terms on the “inside” by

rewriting each ai to ai′, and afterward we move “out” and consider the rules that

apply to (f a1
′ . . . an

′). But our rewriter can also apply rules in an outside-in

direction. Here, we begin by considering rules that could apply to the “outside,”

(f a1 . . . an). If some rule applies, it produces some new term which we then

recursively attempt to simplify; otherwise we move “in” and begin simplifying the ai,

and afterwards we may consider the rules that apply to (f a1
′ . . . an

′).

Both directions of rewriting have their strengths. Inside-out rewriting has the

advantage that simplified ai′ are more likely to be in a reduced form that will match

with rewrite rules, while outside-in rewriting has the advantage that some subterms

may be completely skipped when the rule eliminates a variable. For instance, consider

rewriting the term (car (cdr (cons a (cons b c)))). If we apply a single pass

of outside-in rewriting, we would reduce the term to (car (cons b′ c′)) without

299

rewriting a. On the other hand, a single pass of inside-out rewriting would yield b′,

but in the process we would need to rewrite a.

The logical meaning of a rule is captured by its hyps, lhs, rhs, and equiv; the

other fields are only heuristic annotations that influence how the rewriter will make

use of the rule. We associate a clause with every rule,

[(not hyp1), . . . , (not hypn), (equiv lhs rhs)],

and we say the rule formula is the formula for this clause. Informally, the rule formula

can be understood to mean hyps → (equiv lhs rhs).

In our tracing mechanism, rewrite rule applications are handled with Rule

traces. The rule and substitution list being used are stored in the extras of the trace.

For the trace to be well-formed, the rule formula must be among the theorems of the

current history. Also, the equiv for the rule must be compatible with the iffp for the

trace. That is, if the rule’s equivalence is equal, then it may be used to construct

traces where iffp is either t or nil. But if the rule’s equivalence is iff, then it may

only be used to construct traces where iffp is t.

Rule Trace
(Justified by a rewrite rule)
[assms →] (iff hyp1/σ t)
...
[assms →] (iff hypn/σ t)
[assms →] lhs/σ ≡ rhs/σ

To justify Rule traces, we make use of a couple of supporting derivations. The

name “crewrite” in the lemma stands for “conditional rewrite.”

Formal Theorem 46. Not when not nil

x = nil ∨ (not x) = nil

Proof.

300

x = nil ∨ (if x y z) = y Ax. if when nnil
x = nil ∨ (if x nil t) = nil Instantiation (*1)
(not x) = (if x nil t) Definition of not
x = nil ∨ (not x) = (if x nil t) Expansion
x = nil ∨ (not x) = nil Dj. trans. = *1

Formal Theorem 47. Crewrite rule lemma

(iff x t) 6= t ∨ (not x) = nil

Proof.

x 6= nil ∨ (iff x t) = nil Th. iff t when nil
x 6= nil ∨ (iff x t) 6= t Dj. not t from nil
x = nil ∨ (not x) = nil Th. not when nnil
(not x) = nil ∨ (iff x t) 6= t Cut
(iff x t) 6= t ∨ (not x) = nil Commute or

With these lemmas in place, Rule traces can be justified as follows. Since the

formula for the rule is a theorem, we may begin with a proof of the rule’s formula.

Let equivR be the equivalence relation for this rule. Then, this formula is

(not hyp1) 6= nil ∨ · · · ∨ (not hypn) 6= nil ∨ (equivR lhs rhs) 6= nil,

and by instantiation we may derive (*1),

(not hyp1/σ) 6= nil ∨ · · · ∨ (not hypn/σ) 6= nil ∨ (equivR lhs/σ rhs/σ) = t.

We may also assume that we have been given proofs of the subtraces. That

is, for each i, we have a proof of [assms →] (iff hypi/σ t) = t, from which we may

easily obtain proofs of (*2),

[assms →] (not hypi/σ) = nil,

301

by instantiating crewrite rule lemma and using modus ponens or disjoined modus

ponens.

Combining the proofs from *1 and *2, it is straightforward to derive

[assms →] (equivR lhs/σ rhs/σ) 6= nil.

Then, using equal t from not nil, iff t from not nil, or their disjoined versions, we have

[assms →] (equivR lhs/σ rhs/σ) = t.

When iffp matches equivR, the above is exactly our goal for this trace. Other-

wise, equivR is equal while iffp is t. In this case, the above is a proof of

[assms →] (equal lhs/σ rhs/σ) = t,

and by iff from equal or disjoined iff from equal, we may obtain a proof of our goal,

[assms →] (iff lhs/σ rhs/σ) = t.

So far, we have implied that the hyps of each rule are simply terms. Actually,

each hypothesis is an aggregate with the following fields:

– term, the actual term for this hypothesis,

– fmode, a “forcing mode” (Section 9.8),

– limitp, a flag indicating whether backchaining should be limited, and

– limit, how much to limit backchaining when limitp is set.

What are these limits? We can only apply a conditional rewrite rule when we

can show that all of its hypotheses are true. To do this, we typically recursively call

302

the rewriter on each hypothesis to see if it can rewrite the hypothesis to true. To

ensure the rewriter terminates, we use a counter called blimit to cap the number of

times we can backchain. Ordinarily, when rewriting begins, we initialize blimit with

a large number that we do not expect to reach, say 1000. Then, when it comes time

to relieve a hypothesis, we decrement the blimit in the recursive call. Once the blimit

is exhausted, we are no longer allowed to backchain.

It is useful to give the user more control over the backchain limit, and we do this

on a per-hypothesis basis via the limit and limitp annotations. When the rewriter

backchains to relieve a hypothesis for which limitp is set, it either decrements the

blimit as described above, or sets it to the limit specified by this hypothesis, whichever

is smaller. This allows the user to introduce “cheap” rules where the rewriter is not

allowed to work very hard at relieving a particular hypothesis. For instance, consider

the following rule:

Rule:
(implies (not (consp x))

(equal (car x) nil))

We would not expect this rule to be applicable very often, since we usually

would not apply car to objects which are not conses. But terms matching (car x)

occur quite frequently in proofs, and this rule will lead us to consider (consp x) each

time we encounter such a term. Since we have many rules about consp, the rewriter

could take some time to decide whether the rule applies. To prevent this, we annotate

the hypothesis with a limit of one, so the rewriter can backchain at most once more

in its effort to show that (consp x) is false.

Here we are making a bet: although the limit may prevent the rewriter from

applying the rule in certain cases, we think these cases will probably be rare enough

that they are not worth looking for. In other words, we want the rewriter to use our

303

rule only opportunistically when it can easily see that it is applicable, and not to

spend much time on this rule otherwise. We often use these limits in our work, and

they are supported by ACL2’s rewriter as well.

We organize rewrite rules into theories. A theory is a binary search tree where

the keys are symbols, ordered by symbol-<, and where the values associated with each

key are lists of rewrite rules. We define the leading symbol of a term as follows: the

leading symbol of a constant, variable, or lambda abbreviation is nil, and the leading

symbol of the function application (f t1 . . . tn) is f . In a well-formed theory, for

each key k, the leading symbol of the lhs of each rule associated with k is also k.

Theories provide an efficient way to filter the set of rules which might apply

to a particular term. That is, suppose we want to use rewrite rules to simplify some

term, x. We begin by performing a binary search through the theory to find the list

of rules which share the same leading symbol as x. These are the only rules we need

to consider, because they are the only rules which can match x. This filtering is quite

effective and leaves us with only a few rules to try instead of thousands. We expect

that rewrite rules target only function applications, so the use of nil as the leading

symbol for constants, variables, and lambda abbreviations does not cause a problem.

ACL2 uses a similar scheme, but stores rules via property lists in its “logical world”

instead of using a binary search tree.

The theory is given to the rewriter as part of a larger control structure. A

rewriter control structure is an aggregate with the following components:

– theory, the collection of rewrite rules to use,

– assmctrl, the control settings (ctrl) for the assumptions structure,

– defs, definitions to use during evaluation,

304

– depth, the stack depth to use for evaluation,

– noexec, a list of functions not to evaluate,

– forcingp, a flag to control whether forcing is permitted, and

– betamode, a way to control when beta-reduction is permitted.

The purpose of the theory, assmctrl, defs, and depth should be evident.

The noexec list is just a list of function names which the rewriter should

not evaluate. Preventing evaluation is sometimes useful for maintaining desired

abstractions, and we frequently use this feature in the case of constructor func-

tions such as logic.function and logic.pequal. That is, a rule that targets

(logic.function name args) will match with a term like (logic.function ’if

’(a b c)), but not ’(if a b c). Another common case of this is for zero-ary func-

tions like logic.initial-arity-table; placing these functions on the noexec list

allows us to work with them by name instead of by value.

The forcingp flag is either t or nil and allows the user to globally disable

forcing; see Section 9.8 for details.

Finally, betamode is either nil, once, or t, and controls how the rewriter beta-

reduces lambda abbreviations. When the mode is nil, no beta-reduction is permitted.

This is often useful in the early stages of large proofs, because we may be able to avoid

expanding some lambdas that are in irrelevant branches of if-expressions. Also, since

beta-reduction can replicate the actuals of a lambda, avoiding beta-reduction until

the actuals have been further simplified may allow us to avoid repeating work. When

the mode is once, beta-reduction is permitted but we do not recursively rewrite the

result. This strategy allows us to expand lambdas incrementally. That is, during each

rewriting pass, we may beta-reduce only the outermost lambda. Other techniques,

305

such as case-splitting, can then be used before the next rewriting pass. Finally, when

the betamode is t, we beta-reduce lambdas and recursively rewrite the result.

9.3 The Rewriter

We now give an overview of our conditional rewriter, crw. Crw is a fairly

complex flag function of eleven arguments:

– flag, which is the current mode of operation, and is one of

term rewrite a single term,
list rewrite a list of terms,
rule try to apply a rewrite rule,
rules try to apply a list of rewrite rules,
match try to apply a rule under a particular substitution list,
matches try to apply a rule under a list of substitution lists,
hyp try to relieve a hypothesis, or
hyps try to relieve a list of hypotheses,

– assms, which is the (slow) assumptions structure being used,

– x , which is the term, term list, hypothesis, or list of hypotheses we are currently

trying to rewrite or relieve, as appropriate for this mode of operation,

– rule[s], which is the rule or list of rules we are currently trying to apply, or is

nil in modes such as term and list where we are not dealing with particular

rules,

– sigma[s], which is the substitution list, or list of substitution lists, which we are

currently trying to instantiate the rule with, or is nil in modes such as term,

list, rule, and rules where we are not dealing with particular substitutions,

– cache, which is used to avoid repeatedly rewriting terms, discussed in Section

9.7,

306

– iffp, which is a flag indicating whether equal- or iff-equivalence needs to be

maintained,

– blimit, which is a counter that limits backchaining to ensure that crw always

terminates,

– rlimit, which is a counter that limits repeated rewriting to ensure termination,

– anstack, which is used to implement a heuristic called the ancestors check, which

is discussed in Section 9.4, and

– control, which is the control structure being used, and remains fixed throughout

the course of rewriting.

Regardless of the mode of operation being used, we think of crw as producing

three values, which are returned as an aggregate:

– data, which is the main result and depends upon the mode:

· In term mode, data is a rewriter trace that establishes [assms →] x ≡ x′,

where x′ is the term that has been x rewritten to. If x cannot be simplified

any further, x′ will simply be x, via a Failure trace.

· In list mode, data is just a list of the traces produced by rewriting each

term in the list.

· In rule, rules, match, or matches modes, data may either be nil in-

dicating that the attempt has failed, or may be a trace that establishes

[assms →] x ≡ x′, as in the term mode.

· In hyp mode, on success data is a trace that establishes [assms →] term ≡

t, where term is the term from the hypothesis x; on failure, data is nil.

307

· In hyps mode, data is a cons whose car is t or nil indicating whether

every hypothesis was successfully relieved. On success, the cdr is a list of

the traces produced by relieving each hypothesis, and on failure the cdr is

also nil.

– cache′, which is an updated version of the cache, and

– alimitedp, which is a flag used in our caching scheme.

In order to focus on the main part of the rewriter’s operation, in this section we

will essentially ignore the cache, ancestors stack, and alimitedp flags. To the extent

possible, we also ignore forcing, syntactic restrictions, and free variable matching.

The core of crw is found in the term mode, and the other modes are com-

paratively simple. In term mode, crw operates recursively over the structure of the

input term, x, with base cases to handle constants and variables, and recursive cases

for if-expressions, not-expressions, other functions, and lambda abbreviations.

In each of these cases, we might try to use evaluation, assumptions, or rewrite

rules to simplify x, or we might instead try to first focus on simplifying the subterms

of x. So, the basic questions to answer are, “which approaches should we try?” and

“in which order should we try them?” We now explain how each case is handled.

1. Constants.

Constants are very simple. They have no subterms that crw could recursively

simplify. They evaluate to themselves, so there is no need to try evaluation. They

come first in the term order, so our assumptions system will not be able to simplify

them further. We think it would be strange to target a constant with a rewrite rule,

so we do not try to use rewrite rules.

308

The only thing crw does with constants is to canonicalize them to t or nil

when we are maintaining iff-equivalence. In our implementation, we have built this

into our Evaluation mechanism. So, when x is a non-t, non-nil, constant and iffp

is t, crw produces an Evaluation trace showing that [assms →] x ≡ t; otherwise, it

produces a Failure trace that establishes [assms →] x ≡ x.

2. Variables.

Like constants, variables have no subterms that crw could recursively simplify.

We cannot use evaluation since variables are not ground terms. Like ACL2’s rewriter,

crw does not try to apply rewrite rules to variables; we think that if a rewrite rule

was allowed to target every variable, it would be tried so frequently that rewriting

would be unacceptably slow.

The assumptions system might have inferred that x is equivalent to some

simpler term. Accordingly, crw attempts to use the assumptions system to simplify

x. If this is successful, an appropriate Assumptions trace is returned, and otherwise

we produce a Failure trace which leaves x unchanged.

3. If-expressions.

Suppose x is of the form (if a b c). Crw treats this as a special case instead

of using our usual strategy for other functions. Even if our goal is to maintain equality

while rewriting x, we only maintain iff-equivalence while rewriting a to a′, since

doing so may allow additional rules to apply. We avoid rewriting one of b or c when

a′ is a constant. Finally, when we rewrite b and c, we additionally assume a′ and

(not a′), respectively, since these assumptions may allow more progress to be made.

We begin by recursively rewriting a to a′, maintaining iff-equivalence. If a′ is

a constant, we can check to see whether it is nil. If not, we do not need to consider c;

we recursively rewrite b to b′ using the iffp we are given for the entire if-expression,

309

and produce an If True Trace which establishes [assms →] (if a b c) ≡ b′. On the

other hand, if a′ is nil, we do not need to consider b; we recursively rewrite c to c′

under iffp, and return an If False Trace which establishes [assms →] (if a b c) ≡ c′.

When a′ is not a constant, we recursively rewrite both b and c under iffp. We

rewrite b to b′ in an extended assumptions structure where we assume a′ as a new

hypothesis. Similarly, we assume (not a′) when we rewrite c to c′.

We do not expect rewrite rules to target if, yet we would like to reduce terms

of the form (if y z z) to z, and terms of the form (if y nil t) to (not y), so

we explicitly check for these cases. When b′ and c′ are equal, we produce an If Same

Trace which establishes [assms →] (if a b c) ≡ b′. Otherwise, we construct an If

General Trace which establishes [assms →] (if a b c) ≡ (if a′ b′ c′); most of the

time this is the trace we will return, but if b′ is nil and c′ is t, we can construct an If

Not Trace which establishes [assms →] (if a′ b′ c′) ≡ (not a′), and by Transitivity

we return a trace of [assms →] (if a b c) ≡ (not a′).

4. Not-expressions.

We consider (not a) to be our canonical form for negative terms whose guts

are a, and we prefer this form over variants such as (if a nil t), (equal a nil),

and (iff a nil) since it is the most compact. Above, we mentioned how if-

expressions of the form (if a nil t) are rewritten to (not a), and we use ordinary

rewrite rules to convert the other kinds of negative terms into the not-based form.

When we were first developing crw, we did not have any special handling

for not, but we later found that we wanted to allow iff-based rules to apply to

its argument. To support this, we now handle not separately from other functions.

We begin by rewriting a to a′ under iff, then construct a Not Congruence Trace.

Usually, this trace establishes [assms →] (not a) ≡ (not a′), but if a′ is a constant

310

then the right-hand side will be t or nil, instead.

At this point, we might attempt to further simplify the resulting right-hand

side. If we have obtained t or nil, there is really nothing to do. But if we instead

have (not a′), where a′ is not a constant, what are our options?

Since a′ is the result of rewriting, we think of it as being already simplified and

do not wish to rewrite it recursively. Like ACL2, we prefer not to allow rewrite rules

to target not-expressions, since a more powerful approach is to target the argument,

perhaps using iff as the equivalence relation. Evaluation would not be useful here

since if a′ was a constant then our Not Congruence trace would already have dealt

with it. This leaves only assumptions. We ask the assumptions system if (not a′)

can be simplified, and if so we extend our Not Congruence Trace with the resulting

Assumptions trace, via Transitivity.

5. Other functions.

Our most complicated case is for functions other than if and not. Suppose we

would like to simplify (f a1 . . . an). Here we have a number of options—we could

simplify subterms, try rewrite rules, consult our assumptions system, or perhaps use

evaluation.

Originally, we did not support outside-in rules. When we added them, we

found that they sometimes caused loops with certain “constant gathering” rules, and

we mention some details in Section 9.6. Now, as a special consideration to address

these kinds of loops, our first step is to check whether each ai is a constant; if so,

we try to use Evaluation to simplify (f a1 . . . an) to a constant, unless f is on the

noexec list of the control structure.

If such evaluation is not possible, is not permitted, or fails (e.g., because

of stack depths or calls of witnessing functions), our next step is to try outside-in

311

rewriting. We begin by looking up f in the current theory, and we then try to apply

any outside-in rules which are associated with f . This is done by recursively calling

crw using the rules mode, and passing in the outside-in rules for f as the rule[s]

argument. If any rule applies, this produces a Rule trace which establishes

[assms →] (f a1 . . . an) ≡ x′,

where x′ is the result of applying the rule. We then recursively rewrite x′, which

results in a trace that establishes [assms →] x′ ≡ x′′. Finally, we combine the two

traces using Transitivity, and return the result.

Otherwise we work inside-out. We begin by rewriting the arguments, main-

taining equality, by recursively calling crw in the list mode. This produces a list of

traces, [assms →] a1 = a1
′, . . . , [assms →] an = an

′, which are used as the subtraces

of an Equiv By Args trace that establishes

[assms →] (f a1 . . . an) ≡ (f a1
′ . . . an

′).

We think of this as the first step in an “evolving” trace. That is, let rhs be

(f a1
′ . . . an

′). We now turn now turn our attention to simplifying rhs. If, through

whatever method, we can show that [assms →] rhs ≡ rhs′, then by Transitivity we

can conclude [assms →] (f a1 . . . an) ≡ rhs′. We can then turn our attention to

simplifying rhs′ to rhs′′, and so on.

We begin by trying evaluation. If the resulting ai′ are constants, we try to

evaluate (f a1
′ . . . an

′) unless f occurs in the noexec list of the control structure.

If this is permitted and successful, we stop since we have obtained a constant. Our

Evaluation trace mechanism ensures that if we are only maintaining iff-equivalence,

then the result will be t or nil.

312

Next, we try inside-out rewrite rules. This is done by recursively calling crw

in the rules mode, using the inside-out rules for f as the rule[s] argument. If some

rule applies, this produces a Rule trace which establishes [assms →] rhs ≡ rhs′, and

we use it to extend our evolving trace.

Next, we try assumptions. If our assumptions system can simplify the right-

hand side, we extend our trace with the resulting Assumptions trace.

Finally, if using rules or assumptions was successful, and the rlimit is nonzero,

we try to make additional progress by recursively rewriting the new rhs and add the

result to our trace.

6. Lambda abbreviations.

The final case in term mode is that x is a lambda abbreviation. Suppose

x is ((lambda (v1 . . . vn) β) a1 . . . an). Again there are a number of ways to

proceed—we could simplify subterms, use rewrite rules, consult our assumptions sys-

tem, try evaluation, or use beta-reduction to eliminate the abbreviation.

We begin by recursively simplifying the actuals. We recursively call crw in

the list mode, maintaining equality, producing a list of traces, [assms →] a1 = a1
′,

. . . , [assms →] an = an
′, which become the subtraces of a Lambda Equiv By Args

trace that establishes

[assms →] ((lambda (v1 . . . vn) β) a1 . . . an) ≡

((lambda (v1 . . . vn) β) a1
′ . . . an

′).

If all of the resulting ai′ are constants, we have produced a ground term which

we try to evaluate. If evaluation is successful, we have reduced the lambda to a

constant. In this case, we combine the Lambda Equiv By Args trace with the resulting

Evaluation trace, using Transitivity, and return this combined trace.

313

Otherwise, if evaluation is not possible or fails, we check whether beta-reduc-

tion is permitted by this control structure. If the betamode is once or t, we construct

a Beta-Reduction trace which establishes

[assms →] ((lambda (v1 . . . vn) β) a1
′ . . . an

′) ≡ β/[v1...n . . . a1...n
′].

We can then combine this trace with the Lambda Equiv By Args trace, using

Transitivity, to conclude

[assms →] ((lambda (v1 . . . vn) β) a1 . . . an) ≡ β/[v1...n . . . a1...n
′]

If the betamode is once, we return the trace above. But otherwise, when the

betamode is t, we recursively rewrite β/[v1...n . . . a1...n
′], and construct a Transitivity

to combine its result with the trace above.

This concludes our discussion of the term mode. The other modes are more

straightforward.

In list mode, x is a list of terms which we want to rewrite. We rewrite each

term in the list by recursively calling crw in the term mode, and cons together all

of the traces produced along the way.

In rules mode, x is a term we want to rewrite and rule[s] is a list of the

rewrite rules we would like to try. We try each rule in turn, by recursively calling

crw in the rule mode and passing in the particular rule to use as the value for

rule[s]. Such an attempt either produces a trace explaining how the rule was applied

to x, or nil when the rule could not be applied; we return the trace produced by the

first successful attempt, or nil if none of the attempts were successful.

In rule mode, x is the term we want to rewrite and rule[s] is a particular

rewrite rule we would like to try. We check that the rule is compatible with the

314

equivalence relation we are maintaining, then try to pattern match the lhs of the

rule against x. If this is successful, a substitution list, σ, is produced, which satisfies

lhs/σ = x. At this point, our free variable matching algorithm (see Section 9.5) is

used to extend σ into a list of substitution lists, [σ1, . . . , σn], each of which satisfies

lhs/σi = x. We then try to apply the rule using each of these substitution lists by

recursively calling crw in matches mode, using [σ1, . . . , σn] for sigma[s].

In matches mode, x is the term we want to rewrite, rule[s] is the rule we are

trying to use, and sigma[s] are a list of substitution lists which we think may allow

us to apply the rule. We try each substitution list in turn, by recursively calling crw

in the match mode, passing in the particular σi to try for sigma[s]. As in the rules

mode, each such attempt either produces a trace explaining how the rule was applied

to x, or nil when the rule could not be applied; we return the trace produced by the

first successful attempt, or nil if none of the attempts were successful.

In match mode, x is the term we want to rewrite, rule[s] is the rule we are

trying to use, and sigma[s] is the particular substitution list, σi, which we want to

try. We attempt to relieve all of the hypotheses for the rule by recursively calling

crw in the hyps mode, passing in the hyps of the rule for x, the rule we are using

as rule[s], and the substitution list we are using as sigma[s]. If all of the hypotheses

are successfully relieved, then the traces returned by this recursive call may be used

as the subtraces for a Rule trace which establishes [assms →] lhs/σi ≡ rhs/σi. Since

each σi satisfies lhs/σi = x, this is the same as [assms →] x ≡ rhs/σi, so we return

this trace. Otherwise, when some of the hypotheses cannot be relieved, we return

nil to indicate that the attempt has failed.

In hyps mode, x is a list of hypothesis which we want to relieve, rule[s] is the

rule we are trying to apply, and sigma[s] is the substitution list, σi, we are considering.

We attempt to relieve each hypothesis in turn, by recursively calling crw in the hyp

315

mode. Each such attempt either produces a trace establishing that

[assms →] (iff term/σi t),

or nil to indicate failure. If all of the hypotheses can be relieved successfully, we

return a flag indicating success and the list of traces. Otherwise, as soon as any

hypothesis fails, we return failure.

This leaves only the hyp mode. Here, x is the hypothesis we want to relieve,

rule[s] is the rule we are trying to use, and sigma[s] is the particular substitution list,

σi, which we are trying to use. Let g be x/σi, so that our goal is to construct and

return a trace which establishes [assms →] (iff g t). If we cannot do this, we fail

by returning nil.

Our most general mechanism for constructing this trace is backchaining. The

idea is to call crw recursively in the term mode on g, maintaining iff. To ensure

this terminates, we either decrement the blimit or set it to the limit specified by this

rule, whichever is smaller. If the resulting trace establishes [assms →] (iff g t),

then we have successfully relieved the hypothesis.

But there are a couple of reasons we may not be able to backchain. In partic-

ular, the blimit may have already been exhausted (as is often the case due to “cheap”

hypotheses), or we may have run afoul of the ancestors check heuristic (see Section

9.4). To allow some of these cases to succeed, before backchaining we first try to use

evaluation or assumptions to simplify g. If either of these successfully produces a

trace of the form [assms →] (iff g t), we do not need to backchain.

9.4 Ancestors Checking

It is easy to give a rewriter rules that will cause it to loop. A common example

is the associativity of app. By convention, we ordinarily write this rule so that nested

316

calls of app are grouped up to the right, e.g.,

Rule:
(equal (app (app x y) z)

(app x (app y z)))

But an alternate rule could be used to group the app calls to the left,

Rule:
(equal (app x (app y z))

(app (app x y) z))

If both of these rules are given to the rewriter, it will loop when a term such as

(app (app a b) c) is encountered. That is, applying the first rule will yield (app

a (app b c)), then applying the second rule will lead us back to (app (app a b)

c), and so on. We regard this kind of loop as a failure by the user to provide a

good rewriting strategy, and accordingly we do not try to recover from these loops—

instead, we simply wait for them to exhaust the rlimit, and at that point we report

the situation to the user.

Another kind of loop is more insidious and can occur during backchaining. As

an example, we say that the following rule is a “pump” because it can lead us to

consider a sequence of “inflating” terms.

Rule:
(implies (consp (cdr x))

(equal (consp x) t))

To apply this rule to (consp a), we will need to relieve the hypothesis (consp

(cdr a)). But the rule matches this hypothesis as well, so if we apply it again we

will be led to the hypothesis (consp (cdr (cdr a))), and so on until the blimit is

reached. In rare or contrived cases, perhaps (consp (cdr (cdr (. . . (cdr x)))))

317

is known and applying the rule would be useful, but in practice this kind of inflation

tends to be useless and expensive.

Another kind of backchaining loop can be caused by a combination of rules.

The following rules are not individually pumps, but will destructively interact with

one another to lead us into a backchaining loop.

Rule:
(implies (true-listp x)

(equal (consp x) (if x t nil)))

Rule:
(implies (not (consp x))

(equal (true-listp x) (not x)))

To see the loop, suppose we give both of these rules to the rewriter and begin

rewriting (consp a). Using the first rule, we backchain to (true-listp a). Then,

using the second rule, we backchain to (not (consp a)). As the rewriter descends

to (consp a), the loop repeats.

In ACL2, these kinds of loops are avoided using a heuristic called ancestors

checking, which we reimplement nearly verbatim. The basic approach, dating back to

the Boyer-Moore theorem prover [18], is to maintain an ancestors stack (the anstack

argument to crw). Each time we backchain, we add a frame to the stack which

records

– the term we are trying to relieve,

– the rule we are backchaining on behalf of,

– the guts of the term (to avoid recomputation), and

– the number of function occurrences in the term (to avoid recomputation).

318

Each time we are about to backchain, we compare the new hypothesis to the

ancestors stack, and in certain cases we heuristically decide that no further backchain-

ing should be permitted. Backchaining may be prohibited for two reasons:

– If this exact term (or its guts) are already anywhere on the stack, we do not

allow the backchain. This catches loops caused by rules such as consp-when-

true-listp and true-listp-when-not-consp.

– For every frame caused by the same rule, if (1) the new term looks heuristically

“worse” than the old term and (2) the guts of both terms are applications of the

same function, we do not allow the backchain. This catches loops introduced

by pumps such as consp-when-consp-of-cdr.

The implementation of “worse” is rather subtle, and we do not wish to cover it

in detail. Over time, the way in which ACL2 makes this decision has been tweaked to

be more efficient and to permit certain kinds of backchaining which were previously

prevented. ACL2’s current implementation of “worse” has been in use for over seven

years, and we have reimplemented it as closely as possible. Since ancestors checking

is only used to decide whether or not we will try to relieve a hypothesis, the particular

criteria considered are not important from a logical perspective.

9.5 Free-Variable Matching

Many useful rewrite rules have free variables—variables which occur in a hy-

pothesis but not in the lhs of the rule. A typical example is a transitivity rule. Here,

the lhs only mentions x and z, but the hypotheses also mention the variable y, so y

is a free variable:

Rule:
(implies (and (subsetp x y)

319

(subsetp y z))
(equal (subsetp x z)

t))

Free variables are problematic since they will not be bound in the substitution

list created by matching the lhs against particular terms to be rewritten.

For instance, suppose we have assumed (subsetp a b) and (subsetp b c),

and we would now like to rewrite (subsetp a c). We begin by matching (subsetp

x z) against (subsetp a c), producing the substitution list σ = [x ← a, z ← c].

Since σ does not mention y, if we use it to instantiate our hypotheses, we will think

our obligations are to show (subsetp a y) and (subsetp y c) instead of (subsetp

a b) and (subsetp b c).

To correct for this, we would like to extend σ with a binding for y, say γ,

producing σ′ = [x← a, z← c, y← γ]. Since y is not mentioned in the lhs of the rule,

no matter which γ we pick, we will have lhs/σ′ = (subsetp a c). So, if we can find

any γ which will allow us to relieve the hypotheses, we can use it apply the rule.

Which choices for γ should we try? Here, there is some tension. For each term

we try, we will need to try to relieve the hypotheses under the new substitution list.

This may be expensive, so we would like to suggest relatively few candidates for γ.

On the other hand, if we fail to suggest a workable binding when one exists, the rule

will not be applied and we will fail to make progress.

Our approach is fairly conservative. For each free variable v, we say the first

hypothesis that mentions v is critical. (We determine which hyps are critical when

we create each rule, and record them in the crithyps field so that this computation

need not be repeated.) We will try all of the bindings which, in a fairly trivial way,

can be sure to satisfy all of the critical hypotheses. In particular, recall that our

320

assumptions system includes trueterms, a list of terms which are known to be non-

nil. To generate the σ′ to try, we try to match each critical hypothesis against these

trueterms, using the partial substitution σ as a constraint.

For example, continuing our subsetp scenario from above, the trueterms in

our assumptions system will be (subsetp a b) and (subsetp b c), and the critical

hypothesis is (subsetp x y). We will try to match (subsetp x y) with each of

these trueterms, under the substitution σ = [x← a, z← c]. Here,

– we successfully match (subsetp x y) with (subsetp a b), producing σ′ =

[x← a, z← c, y← b], but

– we fail to match (subsetp x y) with (subsetp b c), because σ requires x to

be bound to a,

so the only σ′ generated binds y to b, which is exactly what we wanted.

Our approach to free-variable matching can be regarded as a simplification of

the default behavior in ACL2 (:match-free :all). But ACL2 also allows the user to

specify other behaviors, such as only considering the first potential match (:match-

free :once), or calling upon a user-defined function [46] which can inspect the goal

and make its own suggestion (bind-free). We have not needed to implement these

features, but it should not be difficult to do so.

In particular, our free variable matching code is implemented as a function,

(rw.create-sigmas-to-try rule sigma trueterms), where rule is the rule we

are using, sigma is the partial substitution which unifies the target term with our

rule’s lhs, and trueterms are the trueterms from the assumptions system. This func-

tion produces a list of the σ′ which should be attempted. The only logical constraints

upon this function are (1) that it produces a list of well-formed substitution lists,

321

and (2) that for every v which is bound in σ, v has the same binding in each σ′.

Accordingly, implementing :match-free :once would only require adding a field to

our rule structures and checking its value.

Implementing bind-free would be only slightly more difficult: we would simi-

larly need to annotate our rules, extend rw.create-sigmas-to-try with a parameter

for the definitions to use for evaluation, and then check that the result of evaluating

the bind-free criteria yielded valid substitution lists.

9.6 Syntactic Restrictions

More powerful rewriting strategies are possible when the user can syntactically

restrict the application of rewrite rules. In ACL2, this is done with the syntaxp [46]

mechanism, and our approach is quite similar.

Why are syntactic restrictions useful? Consider an associative, commutative

function like +. We might like to express the commutativity of + as an unconditional

rewrite rule,

Rule:
(equal (+ a b)

(+ b a))

Normally this rule would loop, e.g., rewriting (+ x 1) to (+ 1 x), then back

to (+ x 1), and so on. To prevent such loops, we syntactically restrict the rule

so that it may only be applied when the term matching b is smaller than the term

matching a, according to the term order. With this restriction, (+ x 1) can still be

rewritten to (+ 1 x), but (+ 1 x) cannot be rewritten back into (+ x 1) since x is

a larger term than 1.

The commutativity rule above is useful in that it normalizes any single addition

322

so that the smaller term is always on the left. Now, consider another rule,

Rule:
(equal (+ a (+ b c))

(+ b (+ a c)))

Without any syntactic restrictions, this rule would cause loops as before, so we

restrict it to apply only when the match for b is smaller than that for a, per the term

order. Together, these two rules are sufficient to normalize any right-associated sum

so that the smallest terms come first. For instance, here is how (+ z (+ y x)) would

be rewritten, working inside-out. (We avoid using syntactic restrictions for outside-in

rules, since the syntactic nature of the subterms we are matching may change during

rewriting.)

(+ z (+ y x)) 7→ (+ z (+ x y)) by commutativity-of-+,

7→ (+ x (+ z y)) by commutativity-of-+-two,

7→ (+ x (+ y z)) by commutativity-of-+.

It is straightforward to convert any sum into a right-associated sum with the

following rule. So, along with the rules above, we can normalize any sum into a

right-associated form where the operands are sorted by the term order.

Rule:
(equal (+ (+ a b) c)

(+ a (+ b c)))

We also often make use of syntactic restrictions to break normal forms when

this will allow us to obtain new ground terms for evaluation. For instance, using the

above rules, we would normalize (+ 1 (+ b (+ a 2))) to (+ 1 (+ 2 (+ a b))).

At this point, we would like to combine the constant terms. In our term order, the

323

constants are contiguous and are smaller than any non-constant terms, so the above

rules move them to the front of the sum. We introduce a new rule which looks for

constant arguments at the front of the sum which can be grouped for evaluation.

Rule:
(equal (+ a (+ b c))

(+ (+ a b) c))

As a syntactic restriction, we may only apply the rule when the terms matching a

and b are constants. In the case of (+ 1 (+ 2 (+ a b))), the rule is allowed to

apply and produces (+ (+ 1 2) (+ a b)). Then, working inside-out, we see that

(+ 1 2) is a ground term and evaluate it, producing 3. Hence, no loop is caused

with associativity-of-+ even though the two rules disagree about which normal form

to use.

How do we implement syntactic restrictions? Suppose we have matched a term

with a rewrite rule, and let σ be a substitution list we would like to try using. Usually,

there is only one such σ to try, but when we are using rules with free variables there

may be many extensions of the initial substitution list. Suppose that σ = [x1 ←

s1, . . . , xn ← sn].

Our rewrite rule’s syntax field contains a list of terms which we interpret as

syntactic restrictions, and only if all of these restrictions are satisfied may attempt

to apply the rule. To decide whether some restriction, R, is satisfied, we begin by

creating a grounding substitution from σ,

ground(σ) = [x1 ← ’s1, . . . , xn ← ’sn],

and we apply this substitution to R. We then try to evaluate the resulting term,

R/ground(σ), using the definitions and stack depth specified in the rewriter’s control

324

structure. For R to be satisfied, the evaluation must not fail and must produce a non-

nil constant. We usually expect that R only mentions the variables involved in the

rule, in which case R/ground(σ) is a ground term and can be evaluated as long as

the stack depth is large enough and all of the functions mentioned are defined.

As a special consideration, we do not use the evaluator described in Section 6.4

to evaluate syntactic criteria. Instead, we use a slightly modified evaluator, called the

syntax evaluator, which can evaluate our term order function, logic.term-<, and

also logic.constantp, as primitives in the style of logic.base-evaluator. There

are two reasons for this.

One is a bootstrapping problem. When we begin to recreate our ACL2 proofs

in Milawa, we want to be able to put syntactic restrictions on rules about functions

like + and equal before we have even defined logic.term-< and logic.constantp.

By building these functions into the evaluator, we avoid needing to maintain some

separate list of definitions for evaluating syntactic restrictions.

The second is efficiency. Many of our syntactic restrictions are about the term

order, but deciding whether terms are in order requires us to count the variables,

constants, and function symbols in the two terms. This can be a somewhat expensive

computation when the terms involved are large, and our usual evaluator is not very

efficient. Building logic.term-< into the evaluator allows us to begin using ordinary

Lisp evaluation quickly, avoiding this overhead. As a simple benchmark, we recorded

the following times and memory usages using ordinary Lisp evaluation, the generic

evaluator presented in Section 6.4, and our custom evaluator for syntactic restrictions,

when comparing the term (+ a (+ b (+ c (+ d e)))) against (+ a (+ b (+ c

(+ d f)))), ten thousand times.

Lisp evaluation Generic evaluator Syntax evaluator
Time .18 seconds 115 seconds .34 seconds
Memory Usage 5.6 MB 3.7 GB 7.3 MB

325

Like the ancestors check, syntactic restrictions are only used to decide whether

we should attempt to apply some rule. Hence, from a logical perspective, the par-

ticulars of how we make the decision, which evaluators we use, and so on, are not

important.

9.7 Rewriter Caching

A recent extension to ACL2 by Boyer and Hunt [16] provides hash-consing,

automatic function memoization, and fast association lists where the lookup and

update operations use hashing for greater efficiency. These features are quite useful

and would be welcome in a more industrially focused version of Milawa, yet they

are somewhat at odds with the goals of our project. In particular, we would like

to keep the story of execution as simple and believable as possible by avoiding any

sophisticated execution tricks.

Using fast association lists, we have implemented a cache for our rewriter that

allows us to avoid repeatedly rewriting commonly occurring terms. We would like

to stress that this cache is optional and we can disable its use entirely, or treat it

as an ordinary association list. We can still carry out all of our proofs with the

cache disabled, although more time is required. Also, the proof checking system we

developed in Chapter 4, which is used to check all of the proofs of Milawa’s fidelity,

does not include any of Boyer and Hunt’s extensions and cannot make efficient use of

the cache.

We implement caches as simple aggregates of blockp, a flag indicating whether

the cache may be written to, and data, a fast association list which maps terms to

cache lines. Data can be thought of as an ordinary association list which is accessed

via lookup and extended by consing, but when we permit fast alists to be used, these

operations are instead implemented using a hash table for efficiency.

326

Data associates with every term, x, a cache line which records up to two

traces. One of these traces records how x was rewritten under equal, and the other

records how x was rewritten under iff. Either trace may be omitted if x has not yet

been rewritten while maintaining the corresponding equivalence relation. Each line is

represented as a pair of the form (eqltrace . ifftrace), where each entry is either nil

or is a trace.

The blockp flag is used in our caching scheme to avoid installing certain

“poor” traces into the cache. At various points in its execution, crw will extend

the cache. This is always done with the function (rw.cache-update term trace

iffp cache), which returns the extended cache. When blockp is nil, we say that

the cache is open and rw.cache-update installs the given trace into the cache line

for this term. But when blockp is t, we say the cache is blocked and no such update

is actually performed; the given cache is returned unchanged.

It is not too difficult to justify our use of caching. Our basic idea is that

every trace we put into the cache should be well-formed and should be carried out

using a fixed set of assumptions. One consequence of this is that we must use fresh

caches when we recursively rewrite b and c in (if a b c), since the assumptions we

are working with have changed. At any rate, if all of the traces in the cache are

well-formed, then any time we take a trace from the cache it will also be well-formed.

Implicit in the word “caching” is a notion of transparency: regardless of

whether the cache is used, the results of rewriting should be the same. This is a

subtle matter, and to develop a more effective caching scheme we are willing to sac-

rifice some degree of transparency. Despite this, our rewriter is still a function in the

mathematical sense. The cache is not “hidden” as some kind of variable in impera-

tive programming, but is instead given to the rewriter as an argument. Because of

this, the rewriter always produces a unique output for any inputs. When we say our

327

caching scheme is not entirely transparent, we only mean to convey that if all of the

other inputs are held constant, the output can vary based on the cache.

The simplest example of this pertains to the rewrite limit. To ensure that crw

terminates, we decrease the rlimit parameter each time we recursively rewrite a term,

and no further rewriting is permitted once the rlimit is exhausted. This counter ruins

simple attempts to memoize calls of the rewriter, e.g., knowing that we were able to

rewrite (consp x) to t using an rlimit of 97 does not necessarily tell us what it will

rewrite to with an rlimit of 96.

In practice, we expect the rlimit will never be hit in the ordinary course of a

proof—in fact, we print a message if this happens, to warn the user that his rules are

probably looping. Accordingly, our caching scheme ignores the rlimit. This violates

transparency in that the sense that there are some terms which will be rewritten

differently when caching is enabled than they would when it is disabled, but allows us

to have a much more useful cache where the stored results may be used throughout

many levels of recursive invocation.

The backchain limit is similar. We decrement the blimit parameter each time

we attempt to relieve a hypothesis, and no further backchaining is permitted once the

blimit reaches zero. As with the rlimit, rewriting (consp x) to t using a backchain

limit of 998 does not necessarily mean we can do the same with a limit of 997.

But the backchain limit is more subtle to handle well, because we do expect it

to be encountered in the course of relieving “cheap” hypotheses (page 303). Because

of this, simply ignoring the backchain limit, as we ignore the rewrite limit, is not a

good option. Imagine that the rewriter first considers (consp x) in the context of a

very low backchain limit, and fails to rewrite it. It would be a shame to remember

this fact and give up on rewriting (consp x) in a later, less-restricted setting, where

more work could have been attempted.

328

Our approach is to ignore the backchain limit only until we begin working to

relieve a hypothesis with an explicit limit. The idea is that the backchain limit is

unlikely to be hit unless a cheap hypothesis has lowered it. Once a cheap hypothesis

is encountered, we prevent crw from writing to the cache while it attempts to relieve

the hypothesis. In particular,

1. we record whether or not the cache is currently blocked,

2. we put the cache into blocking mode,

3. we recursively invoke crw to rewrite the hypothesis, and

4. we restore the original blocking mode.

The most delicate part of our caching scheme is the ancestors check. Much

like the backchain limit, it would be dangerous to ignore the ancestors stack since

we might “poorly” rewrite x in a context where we have many ancestors restrictions,

then reuse this result in a less-restricted context.

To prevent this, we develop a notion of an ancestors-limited rewrite. The idea

is to identify which rewrites may have been limited due to ancestors checking, and to

avoid adding them to the cache. In particular:

– An attempt to relieve a hypothesis is ancestors-limited if (1) the ancestors

check prevents this hypothesis from being pursued, or (2) when we rewrote the

hypothesis, the rewrite was ancestors-limited and the result was not a constant.

– An attempt to apply a rule is ancestors-limited if every potential match we

considered failed, and at least one of the attempts failed due to an ancestors-

limited attempt to relieve a hypothesis.

329

– An attempt to rewrite a term is ancestors-limited if (1) none of the rules we

attempted were successful, (2) at least one of the rules we attempted to apply

was ancestors-limited, and (3) other simplification methods such as evaluation

and assumptions were not successful.

We perform this computation in crw and pass the result along in the alimitedp flag

of the return value.

When should crw try to use the cache, and when should traces be added?

Like deciding when to use evaluation, assumptions, rewrite rules, and subterm simpli-

fication, there are many options, and the best course is not necessarily clear without

experimentation.

Our approach is to use and extend the cache only in the term and hyp modes;

in other modes, we are only concerned with properly passing the cache around and

performing the alimitedp computation.

In term mode, we think of rewriting constants and variables as being relatively

cheap, and accordingly we do not consult the cache or extend it with the traces we

construct. For (if a b c), we do not try to make use of the cache, but we take care

to create new, empty caches to use when rewriting b and c, since different sets of

assumptions are used. We do not use the cache when rewriting (not a), since this

only involves a little work beyond rewriting a. We also do not consult the cache for

lambda abbreviations.

In fact, our only use of the cache is our handling of functions besides if

and not, say (f a1 . . . an). Here, after the ai are rewritten, we check whether

(f a1
′ . . . an

′) is cached, and reuse its trace if so. Otherwise, after we finish rewrit-

ing (f a1
′ . . . an

′) into rhs, we add the trace which establishes (f a1
′ . . . an

′) ≡

rhs to the cache, unless this rewrite was ancestors limited. Of course, if the cache is

330

blocked, our attempt to extend it may not produce any changes.

In the hyp mode, we are somewhat more aggressive. Let g be the instantiated

term for the hypothesis. Here, we immediately consult the cache to see whether the

trace for g has already been computed, and if so we use the result. When no such trace

exists, we follow the approach outlined in Section 9.3. Barring ancestors limitations,

we add the result of rewriting g to the cache before we return.

The strategy just outlined has a interesting interaction with cheap hypotheses.

For instance, suppose we are attempting to apply some rule with (consp x) as a

hypothesis with a backchain limit of zero. Although we are not allowed to backchain,

we still consult the cache. If in the course of applying previous rules, (consp x) was

successfully rewritten to t in a non-cheap context, we can use the cached result to

apply the rule.

9.8 Forcing Hypotheses

In many conditional rewrite rules, there is no reason to expect that the hy-

potheses will be satisfied. For instance, consider the following rule.

Rule:
(implies (subsetp x y)

(equal (disjointp x y)
(not (consp x))))

During proof attempts, the lhs of this rule, (disjointp x y), will match

with any term of the form (disjointp a b). When this match occurs, we do not

necessarily expect to be able to show that a is a subset of b. Indeed, this will often

not be the case.

On the other hand, there are certain hypotheses which we expect to always be

true. A good example of these are type-like hypotheses. For instance, recall that we

331

have introduced logic.function, logic.function-name, and logic.function-

args as aliases for cons, car, and cdr, respectively. Since our logic is untyped and

total, nothing forces us to “properly” use these aliases; we are always free to write,

say, (logic.function-args 5), or to call car instead of logic.function-name

when we are working with a function application. But we adopt a discipline whereby

we always use these aliases when working with function application terms, and we

never use them improperly. In fact, we make use of ACL2’s guard mechanism [52] to

mechanically enforce this discipline.

Now, consider the following rule.

Rule:
(implies (and (logic.functionp x)

(logic.termp x))
(equal (logic.term-listp (logic.function-args x))

t))

Because of our discipline, if we encounter a term of the form (logic.func-

tion-args a) during a proof, we think it is reasonable to expect that a is a valid

function application term. Accordingly, we think that any time the lhs of this rule

matches some term, the hypotheses should be true.

In a statically typed logic, this rule would probably not even have hypothe-

ses. Instead, we would have introduced terms as a sum type with function appli-

cations as one of the disjuncts, and the type system would not allow us to apply

logic.function-args to a natural number or to take the car of a function applica-

tion. In fact, the rule itself would be unnecessary since (logic.function-args x)

would have type term list.

But type-like hypotheses are only one example, and often there are additional

requirements on the use of our functions which cannot be expressed as simple types.

332

As an example, recall the faithfulness theorem for build.reflexivity,

Rule:
(implies (and (logic.termp a)

(logic.term-atblp a atbl)
(memberp (axiom-reflexivity) axioms))

(logic.proofp (build.reflexivity a) axioms thms atbl))

In a typed logic, the signature of build.reflexivity would be term →

appeal, so the first hypothesis would be taken care of by the type system. It is

difficult to imagine expressing the other hypotheses as types. Even so, they express

conditions which are necessary for our use of build.reflexivity to be sensible, and

we expect them to hold any time that we are concerned with the validity of the proof

created by build.reflexivity.

In ACL2, the user can instruct the rewriter to force such hypotheses. Ordi-

narily, if a hypothesis cannot be rewritten to t, ACL2 simply fails to apply the rule

since its application cannot be justified. But when ACL2’s rewriter fails to relieve a

forced hypothesis, it will instead “pretend” the hypothesis could be rewritten to t.

Later, if the rest of the proof has been successful, we must return to these pretended

steps and show that each forcibly assumed hypothesis is justified.

For many reasons, this deferral can be useful. [27, 42, 87]

Upon seeing a forcibly assumed hypothesis, the user often realized he has

not properly stated his theorem. In fact, he often needs to add the very hypothesis

being forced to make his conjecture true. As an example, many of our proof-building

functions like build.reflexivity only produce valid proofs when certain theorems

and axioms have been established, and when the arities of certain functions like if

and equal are as expected. Having so many of these functions, it is easy to forget

the precise requirements for using them.

333

In other cases, the forcibly assumed hypothesis may indeed be provable, but

may simply not be possible to establish through rewriting using the currently available

rules. Here, forcing effectively allows us to apply other techniques (e.g., induction,

generalization, case splitting, etc.), or to try rewriting with different rules.

Finally, forcing allows for a certain optimization. In the course of rewriting a

clause or a list of clauses, we may force a number of hypotheses, leaving us with a list

of forcing obligations, say [assms1 → (iff h1 t), . . . , assmsn → (iff hn t)]. This

list often contains duplicates, and as an optimization we can remove the duplicates

before we begin proving these new goals. In some of our proofs, hundreds of duplicate

goals are eliminated this way.

How do we implement forcing? Recall that each of our hypothesis structures

includes an fmode field that specifies the forcing mode to be used while relieving the

hypothesis. When a hypothesis should not be forced, its fmode is nil. Otherwise,

its fmode is either weak or strong, and we may force it.

The difference between weak and strong forcing is somewhat subtle. To relieve

a hypothesis h, we need to rewrite it to t. One way we might fail to do this is by

rewriting h to some variable or function application which we do not know how to

simplify further. Weak and strong forcing handle this case identically, by forcibly

assuming h. But another way we can fail is by rewriting h to nil. Here, forcing h is

more questionable, since we have effectively “disproved” h from these hypotheses. On

one hand, we may still be able to prove the forced goal for h if, in the course of further

rewriting and other techniques, we can identify some contradictory hypotheses. On

the other, if this is really our only way to prove the goal, what is gained by forcing

the hypothesis? After all, the other assumptions are already present in the clause we

are rewriting, so the contradiction should be evident without forcing.

Rather than globally choose one behavior or the other, we leave it up to the

334

user. If a hypothesis is only weakly forced, then we still allow it to fail when it is

rewritten to nil. Strong forcing, on the other hand, forces the hypothesis even when

it is rewritten to nil.

In practice, we only make use of weak forcing throughout our proofs, which

is the behavior ACL2 uses. But we suspect strong forcing may be useful in the

future. When we were developing our ACL2 proof sketch, we often ran into cases

where hypotheses were not being forced as we expected. These problems led to minor

changes in ACL2 to improve forcing. It may be that there are similar corner cases in

Milawa, and that strong forcing is, in fact, desirable in certain cases.

In our tracing mechanism, we relieve each forced hypothesis using a new kind

of trace,

Forcing Trace
(Must be justified later)

[assms →] (iff hyp t)

How can we justify the use of Forcing traces? To begin with, we write a func-

tion, rw.collect-forced-goals, which walks over a trace and gathers the formulas

for every subtrace whose method is force. This function is used in two ways. First,

our trace compiler, rw.compile-trace, expects to be given a list of proofs of these

formulas as an argument. This makes it trivial for the compiler to construct a proof

for any Forcing trace—we simply use the given proof of its formula. Second, when we

call upon our rewriter to simplify some term, we also use rw.collect-forced-goals

to gather up a list of the forced obligations we have incurred.

Adding Forcing traces to crw is straightforward. We attempt to relieve hy-

potheses in a uniform way, regardless of whether they are forced. But before failing

to relieve a hypothesis, we check whether forcing should be used. This decision is

335

made by checking the fmode for the hypothesis and the forcingp flag in the control

structure. This latter flag allows the user to disable forcing globally, which can be

useful in the early stages of a large proof. Then, if forcing is permitted, we create a

Forcing trace for the hypothesis instead of failing.

9.9 Justifying the Rewriter

We now summarize our ACL2 proof of the justification of crw. The proof has

two steps. First, we show that any well-formed trace can be compiled into a proof of

its formula. Then, we show that crw always produces a well-formed trace.

Our trace compiler, rw.compile-trace, takes three arguments: the trace to

compile, the list of function definitions for evaluation, and the proofs of any forced

goals. Before we describe its implementation, here are the ACL2 theorems which

establish that it is well-typed, relevant, and faithful.

ACL2 Code
(defthm logic.appealp-of-rw.compile-trace

(implies (and (rw.tracep x)
(rw.trace-okp x defs)
(definition-listp defs)
(logic.appeal-listp fproofs)
(subsetp (rw.collect-forced-goals x)

(logic.strip-conclusions fproofs)))
(logic.appealp (rw.compile-trace x defs fproofs))))

(defthm logic.conclusion-of-rw.compile-trace
(implies (and (rw.tracep x)

(rw.trace-okp x defs)
(definition-listp defs)
(logic.appeal-listp fproofs)
(subsetp (rw.collect-forced-goals x)

(logic.strip-conclusions fproofs)))

336

(equal (logic.conclusion
(rw.compile-trace x defs fproofs))

(rw.trace-formula x))))

(defthm logic.proofp-of-rw.compile-trace
(implies (and (rw.tracep x)

(rw.trace-okp x defs)
(rw.trace-atblp x atbl)
(rw.trace-env-okp x defs thms atbl)
(definition-listp defs)
(logic.formula-list-atblp defs atbl)
(subsetp defs axioms)
(logic.appeal-listp fproofs)
(logic.proof-listp fproofs axioms thms atbl)
(subsetp (rw.collect-forced-goals x)

(logic.strip-conclusions fproofs))
... various arities are correct ...
... various formulas are axioms ...
... various formulas are thms ...
)

(logic.proofp (rw.compile-trace x defs fproofs)
axioms thms atbl)))

Our notion of what constitutes a well-formed trace is captured by the four

predicates about x which are mentioned in the proof of faithfulness.

– (rw.tracep x) determines if x is a structurally well-formed trace. That is, x

must be a cons tree of a certain shape, with a symbol for its method field, terms

for its lhs and rhs fields, a Boolean for its iffp field, a structurally well-formed

hypbox for its hypbox field, and, recursively, a list of structurally well-formed

traces for its subtraces field.

– (rw.trace-atblp x atbl) determines if x is well-formed with respect to the

arity table atbl. That is, the lhs and rhs of x, and every term in the hypbox of

337

x, must have proper arities with respect to atbl, and every subtrace must also

satisfy these criteria.

– (rw.trace-okp x defs) determines if x is well-formed with respect to most of

the requirements for each kind of trace introduced in Section 9.1. For instance, if

x is a Failure trace, its lhs and rhs must be the same; if x is a Transitivity trace,

it must have two subtraces which agree with its equivalence relation, its lhs and

rhs must be the lhs and rhs of the first and second subtraces, respectively, and

so on. The defs parameter is needed to ensure that evaluation traces have the

correct conclusion. Every subtrace must also satisfy these criteria.

– (rw.trace-env-okp x defs thms atbl) determines if xmeets the criteria for

rewrite rules from Section 9.2. That is, for every Rule trace in x, the formula for

the rule must be among the given thms. Additionally, the rule and substitution

list being used must be well-formed with respect to the given arity table, atbl.

We implement our trace compiler as a flag function with two modes, one to

compile an individual trace, and one to compile a list of traces.

Definition: rw.flag-compile-trace
(pequal*
(rw.flag-compile-trace flag x defs fproofs)
(if (equal flag ’trace)

(let* ((subtraces (rw.trace->subtraces x))
(subproofs (rw.flag-compile-trace ’list subtraces defs

fproofs)))
(rw.compile-trace-step x defs subproofs fproofs))

(if (consp x)
(cons (rw.flag-compile-trace ’trace (car x) defs fproofs)

(rw.flag-compile-trace ’list (cdr x) defs fproofs))
nil)))

338

The work of compiling each individual step is handled by rw.compile-trace-

step, which simply inspects the method of the trace and invokes a separate function

for each kind of trace. We can easily extend this function to add new kinds of traces

without changing the proofs for the current traces. This function can be understood

as a first-order approximation of a polymorphic call.

Definition: rw.compile-trace-step
(pequal* (rw.compile-trace-step x defs proofs fproofs)

(let ((method (rw.trace->method x)))
(cond ((equal method ’fail)

(rw.compile-fail-trace x))
((equal method ’transitivity)
(rw.compile-transitivity-trace x proofs))
((equal method ’equiv-by-args)
(rw.compile-equiv-by-args-trace x proofs))

... and so on ...
((equal method ’force)
(rw.compile-force-trace x fproofs))
)))

Finally, we have a compiler function for each kind of trace. We will only

show a few examples. The simplest compiler is for Failure traces, where no subproofs

need to be considered. Even here we have cases for iffp and for whether there are

assumptions.

Definition: rw.compile-fail-trace
(pequal* (rw.compile-fail-trace x)

(let* ((hypbox (rw.trace->hypbox x))
(iffp (rw.trace->iffp x))
(lhs (rw.trace->lhs x)))

(if (and (not (rw.hypbox->left hypbox))
(not (rw.hypbox->right hypbox)))

;; no assms: just conclude (equiv x x) by reflexivity
(if iffp

339

(build.iff-reflexivity lhs)
(build.equal-reflexivity lhs))

;; assms: start with (equiv x x), then expand
(if iffp

(build.expansion (rw.hypbox-formula hypbox)
(build.iff-reflexivity lhs))

(build.expansion (rw.hypbox-formula hypbox)
(build.equal-reflexivity lhs))))))

Many traces require subtraces. In the compiler for the trace, we assume we are

given proofs of the formulas for these subtraces. As an example, here is our compiler

for Transitivity traces.

Definition: rw.compile-transitivity-trace
(pequal*
(rw.compile-transitivity-trace x proofs)
(let* ((hypbox (rw.trace->hypbox x))

(iffp (rw.trace->iffp x))
(proof1 (first proofs))
(proof2 (second proofs)))

(if (and (not (rw.hypbox->left hypbox))
(not (rw.hypbox->right hypbox)))

(if iffp
(build.transitivity-of-iff proof1 proof2)

(build.transitivity-of-equal proof1 proof2))
(if iffp

(build.disjoined-transitivity-of-iff proof1 proof2)
(build.disjoined-transitivity-of-equal proof1 proof2)))))

Forcing traces are unique. Since the caller of rw.compile-trace must provide

proofs of all of the formulas for the forced traces, compiling such a trace only involves

finding the provided proof in this list.

Definition: rw.compile-force-trace
(pequal* (rw.compile-force-trace x fproofs)

340

(logic.find-proof (rw.trace-formula x) fproofs))

We establish that each of these individual compilers is well-typed, relevant,

and faithful. The relevance theorem always shows that the compiler produces a proof

of the formula for this trace. These results are then combined to prove the three

theorems for rw.compile-trace-step:

ACL2 Code
(defthm logic.appealp-of-rw.compile-trace-step

(implies (and (rw.tracep x)
(rw.trace-step-okp x defs)
(definition-listp defs)
(logic.appeal-listp proofs)
(equal (logic.strip-conclusions proofs)

(rw.trace-list-formulas
(rw.trace->subtraces x)))

(logic.appeal-listp fproofs)
(subsetp (rw.collect-forced-goals x)

(logic.strip-conclusions fproofs)))
(logic.appealp
(rw.compile-trace-step x defs proofs fproofs))))

(defthm logic.conclusion-of-rw.compile-trace-step
(implies (and (rw.tracep x)

(rw.trace-step-okp x defs)
(definition-listp defs)
(logic.appeal-listp proofs)
(equal (logic.strip-conclusions proofs)

(rw.trace-list-formulas
(rw.trace->subtraces x)))

(logic.appeal-listp fproofs)
(subsetp (rw.collect-forced-goals x)

(logic.strip-conclusions fproofs)))
(equal (logic.conclusion

(rw.compile-trace-step x defs proofs fproofs))

341

(rw.trace-formula x))))

(defthm logic.proofp-of-rw.compile-trace-step
(implies (and (rw.tracep x)

(rw.trace-atblp x atbl)
(rw.trace-step-okp x defs)
(rw.trace-step-env-okp x defs thms atbl)

(definition-listp defs)
(logic.formula-list-atblp defs atbl)
(subsetp defs axioms)

(logic.appeal-listp proofs)
(logic.proof-listp proofs axioms thms atbl)
(equal (logic.strip-conclusions proofs)

(rw.trace-list-formulas
(rw.trace->subtraces x)))

(logic.appeal-listp fproofs)
(logic.proof-listp fproofs axioms thms atbl)
(subsetp (rw.collect-forced-goals x)

(logic.strip-conclusions fproofs))

... various arities are correct ...

... various formulas are thms ...

... various formulas are axioms ...
)

(logic.proofp
(rw.compile-trace-step x defs proofs fproofs)
axioms thms atbl)))

The three theorems for rw.compile-trace follow, by induction.

The second half of the justification of crw is to show the trace it produces

is well-formed in the sense of logic.proofp-of-rw.compile-trace, and hence can

be compiled into a fully expansive proof. That is, we must show the trace returned

by crw satisfies rw.tracep, rw.trace-atblp, rw.trace-okp, and rw.trace-env-

-okp. This is more difficult to manage since it involves reasoning about the actual

operation of crw, a large and complicated function with many cases.

342

An important piece of groundwork for carrying out our proof is to introduce

a constructor function for each kind of trace. Perhaps the simplest way to represent

traces would be as 7-tuples. As an optimization, we instead use trees of a more

compact shape, so that only 6 conses are required to construct a trace, and fewer calls

of car or cdr are required to access the various fields. We introduce the constructor

function

(rw.trace method hypbox lhs rhs iffp subtraces extras)

in the style of logic.function. That is, rw.trace conses together a trace object

out of these components. But whereas this is a “general purpose” constructor, we

also introduce a “special purpose” constructor for each kind of trace. For instance,

here is our constructor for a Transitivity trace. Here, we expect that the arguments

will have compatible iffp and assms fields, and that the rhs of x will be the lhs of y.

Definition: rw.transitivity-trace
(pequal* (rw.transitivity-trace x y)

(let ((a (rw.trace->lhs x))
(c (rw.trace->rhs y))
(hypbox (rw.trace->hypbox x))
(iffp (rw.trace->iffp x)))

(rw.trace ’transitivity hypbox a c iffp (list x y) nil)))

As another example, our constructor for If Same traces is shown below. Here,

we expect that the arguments, x, y, and z, are traces which are suitable as subtraces.

That is, we should be given

x : [assms →] (iff x1 x2),

y : x2, assms → y ≡ w,

z : (not x2), assms → z ≡ w,

343

and we will produce a new If Same trace which establishes

[assms →] (if x1 y z) ≡ w.

Definition: rw.crewrite-if-specialcase-same-trace
(pequal* (rw.crewrite-if-specialcase-same-trace x y z)

(rw.trace ’crewrite-if-specialcase-same
(rw.trace->hypbox x)
(logic.function ’if

(list (rw.trace->lhs x)
(rw.trace->lhs y)
(rw.trace->lhs z)))

(rw.trace->rhs y)
(rw.trace->iffp y)
(list x y z)
nil))

We use these specialized constructors to build every trace throughout crw.

Accordingly, to show the trace produced by crw satisfies our various well-formedness

predicates, we mainly need to reason about the conditions under which these con-

structors produce well-formed traces. We introduce rewrite rules to accomplish this.

For instance, in the case of Transitivity traces, we have:

ACL2 Code
(defthm rw.tracep-of-rw.transitivity-trace

(implies (and (rw.tracep x)
(rw.tracep y))

(rw.tracep (rw.transitivity-trace x y))))

(defthm rw.trace-atblp-of-rw.transitivity-trace
(implies (and (rw.trace-atblp x atbl)

(rw.trace-atblp y atbl))
(rw.trace-atblp (rw.transitivity-trace x y) atbl)))

(defthm rw.trace-okp-of-rw.transitivity-trace

344

(implies (and (equal (rw.trace->iffp x) (rw.trace->iffp y))
(equal (rw.trace->hypbox x) (rw.trace->hypbox y))
(equal (rw.trace->rhs x) (rw.trace->lhs y))
(rw.trace-okp x defs)
(rw.trace-okp y defs))

(rw.trace-okp (rw.transitivity-trace x y) defs)))

(defthm rw.trace-env-okp-of-rw.transitivity-trace
(implies (and (rw.trace-env-okp x defs thms atbl)

(rw.trace-env-okp y defs thms atbl))
(rw.trace-env-okp (rw.transitivity-trace x y)

defs thms atbl)))

And similarly, for If Same traces, we have:

ACL2 Code
(defthm rw.tracep-of-rw.crewrite-if-specialcase-same-trace

(implies (and (rw.tracep x)
(rw.tracep y)
(rw.tracep z))

(rw.tracep
(rw.crewrite-if-specialcase-same-trace x y z))))

(defthm rw.trace-atblp-of-rw.crewrite-if-specialcase-same-trace
(implies (and (rw.trace-atblp x atbl)

(rw.trace-atblp y atbl)
(rw.trace-atblp z atbl)
(equal (cdr (lookup ’if atbl)) 3))

(rw.trace-atblp
(rw.crewrite-if-specialcase-same-trace x y z)
atbl)))

(defthm rw.trace-okp-of-rw.crewrite-if-specialcase-same-trace
(implies
(and (rw.tracep x)

(rw.tracep y)

345

(rw.tracep z)
(rw.trace-okp x defs)
(rw.trace-okp y defs)
(rw.trace-okp z defs)
(rw.trace->iffp x)
(equal (rw.trace->iffp y) (rw.trace->iffp z))
(equal (rw.trace->rhs y) (rw.trace->rhs z))
(equal (rw.hypbox->left (rw.trace->hypbox y))

(cons (logic.function ’not (list (rw.trace->rhs x)))
(rw.hypbox->left (rw.trace->hypbox x))))

(equal (rw.hypbox->left (rw.trace->hypbox z))
(cons (rw.trace->rhs x)

(rw.hypbox->left (rw.trace->hypbox x))))
(equal (rw.hypbox->right (rw.trace->hypbox y))

(rw.hypbox->right (rw.trace->hypbox x)))
(equal (rw.hypbox->right (rw.trace->hypbox z))

(rw.hypbox->right (rw.trace->hypbox x))))
(rw.trace-okp
(rw.crewrite-if-specialcase-same-trace x y z)
defs)))

(defthm rw.trace-env-okp-of-rw.crewrite-if-specialcase-same-trace
(implies (and (rw.trace-env-okp x defs thms atbl)

(rw.trace-env-okp y defs thms atbl)
(rw.trace-env-okp z defs thms atbl))

(rw.trace-env-okp
(rw.crewrite-if-specialcase-same-trace x y z)
defs thms atbl)))

Some of these rules have many hypotheses, but since we only expect crw to

construct well-formed traces, during our main proof effort all of these hypotheses

should be true. We force them all.

Rules like rw.trace-okp-of-rw.transitivity-trace have hypotheses that

refer to the lhs, rhs, and iffp of x and y, the traces which are being combined. But

346

sometimes, during the proofs for crw, the matches for x and y are calls of other

trace constructors. Because of this, we must be able to reason about, e.g., the lhs of

the trace produced by each constructor. This is generally quite straightforward. For

instance, for Transitivity traces, we can prove the following, unconditional rules.

ACL2 Code
(defthm rw.trace->hypbox-of-rw.transitivity-trace

(equal (rw.trace->hypbox (rw.transitivity-trace x y))
(rw.trace->hypbox x)))

(defthm rw.trace->lhs-of-rw.transitivity-trace
(equal (rw.trace->lhs (rw.transitivity-trace x y))

(rw.trace->lhs x)))

(defthm rw.trace->rhs-of-rw.transitivity-trace
(equal (rw.trace->rhs (rw.transitivity-trace x y))

(rw.trace->rhs y)))

(defthm rw.trace->iffp-of-rw.transitivity-trace
(equal (rw.trace->iffp (rw.transitivity-trace x y))

(rw.trace->iffp x)))

With these constructors and our rules for reasoning about them in place, we

carry out the proofs for crw.

Each proof involves a fairly typical induction over the definition of crw, with

cases for each flag. These kinds of proofs are large and must include separate cases

for each mode and return value. For instance, in our rw.tracep proof, we must

simultaneously show that

1. the trace returned in term mode is accepted by rw.tracep,

2. the cache returned in term mode contains traces which are all accepted by

rw.tracep,

347

3. the list of traces returned in list mode are all accepted by rw.tracep,

4. the cache returned in list mode contains traces which are all accepted by

rw.tracep,

and so on, proving similar results for the other modes.

In the end, we introduce rw.crewrite as a wrapper for crw in term mode,

and we establish the following theorems:

ACL2 Code
(defthm rw.tracep-of-rw.crewrite

(implies (and (rw.assmsp assms)
(logic.termp x)
(booleanp iffp)
(rw.controlp control))

(rw.tracep
(rw.crewrite assms x iffp blimit rlimit control))))

(defthm rw.trace-atblp-of-rw.crewrite
(implies (and (rw.assmsp assms)

(rw.assms-atblp assms atbl)
(logic.termp x)
(logic.term-atblp x atbl)
(booleanp iffp)
(rw.controlp control)
(rw.control-atblp control atbl)
(equal (cdr (lookup ’not atbl)) 1))

(rw.trace-atblp
(rw.crewrite assms x iffp blimit rlimit control)
atbl)))

(defthm rw.trace-okp-of-rw.crewrite
(implies (and (logic.termp x)

(rw.assmsp assms)
(booleanp iffp)

348

(rw.controlp control))
(rw.trace-okp
(rw.crewrite assms x iffp blimit rlimit control)
(rw.control->defs control))))

(defthm rw.trace-env-okp-of-rw.crewrite
(implies (and (logic.termp x)

(logic.term-atblp x atbl)
(rw.assmsp assms)
(rw.assms-atblp assms atbl)
(booleanp iffp)
(rw.controlp control)
(rw.control-atblp control atbl)
(rw.control-env-okp control axioms thms)
(equal (cdr (lookup ’not atbl)) 1))

(rw.trace-env-okp
(rw.crewrite assms x iffp blimit rlimit control)
(rw.control->defs control)
thms atbl)))

We also establish that the hypbox, lhs, and iffp of the resulting trace are what

we would expect:

ACL2 Code
(defthm rw.trace->hypbox-of-rw.crewrite

(implies (and (rw.assmsp assms)
(logic.termp x)
(booleanp iffp)
(rw.controlp control))

(equal (rw.trace->hypbox (rw.crewrite assms x iffp blimit
rlimit control))

(rw.assms->hypbox assms))))

(defthm rw.trace->lhs-of-rw.crewrite
(implies (and (rw.assmsp assms)

(logic.termp x)

349

(booleanp iffp)
(rw.controlp control))

(equal (rw.trace->lhs (rw.crewrite assms x iffp blimit
rlimit control))

x)))

(defthm rw.trace->iffp-of-rw.crewrite
(implies (and (rw.assmsp assms)

(logic.termp x)
(booleanp iffp)
(rw.controlp control))

(equal (rw.trace->iffp (rw.crewrite assms x iffp blimit
rlimit control))

iffp)))

9.10 Fast Rewriting

Just as we have both slow and fast versions of our assumptions system, we have

slow and fast versions of our rewriter. So far, we have described the slow version,

crw. One reason crw is inefficient is that each assumption trace must include

the equivalence trace that justifies its conclusions, and hence it must use the slow

version of our assumptions system. Additionally, there is some overhead involved in

constructing rewrite traces: we call cons six times to construct a trace, and since we

may need to construct many traces during the course of any particular rewrite, this

overhead can add up.

The fast version of our rewriter, fast-crw, avoids much of this overhead. It

takes almost the same arguments as crw, with two notable exceptions:

– fast-crw should be given a fast assumptions system, whereas crw takes a

slow assumptions system, and

350

– fast-crw should be given a fast cache, which we have not yet introduced but

is described below, whereas crw takes a slow (ordinary) cache.

Like crw, fast-crw produces three outputs, data, cache′, and alimitedp. Whereas

crw produced a trace for its data, fast-crw produces a fast trace (also introduced

below), and a updated fast cache. To keep fast-crw and crw in agreement as we

make changes, we programmatically generate the definition of fast-crw from crw

by simple rewriting.

In Section 8.6, we introduced our fast assumptions system, which uses ordinary

lists of terms rather than lists of equivalence traces as the representation of each

equivalence set. Fast traces and caches are similar. A fast trace is an aggregate of a

term, rhs, which intuitively is the result of rewriting, and a list of formulas, fgoals,

which are any formulas that were forcibly assumed during the rewrite. A fast cache

line is like an ordinary cache line, except that it stores fast traces instead of slow

traces; a fast cache is like a regular cache, except that terms are associated with fast

cache lines instead of ordinary cache lines.

Like the fast version of our assumptions system, the fast traces produced

by fast-crw do not contain enough information to produce fully expansive proofs.

Instead, to justify fast-crw, we show that it produces the same results as crw.

Just as we used the imaging functions set-image, db-image, and assm-

image to relate our fast and slow equivalence sets, equivalence databases, and as-

sumptions structures, we introduce new imaging functions to relate our fast and slow

traces and caches. Given a slow rewrite trace, x, trace-image(x) creates the cor-

responding fast trace, whose rhs is the rhs of x, and whose fgoals are the result of

(rw.collect-forced-goals x). Given a slow cache line, x, cline-image(x) cre-

ates the corresponding fast cache line by applying trace-image to each trace. Given

351

a slow cache, x, cache-image(x) creates a fast cache by applying cline-image to

each cache line.

Showing that fast-crw produces the image of crw is the most difficult proof

we have carried out with Milawa. We present the actual ACL2 defthm command for

our main result, below. To read this, note that:

– rw.crewrite-core is a simple wrapper for running crw in term mode, which

passes in nil for the unused rule[s] and sigma[s] parameters,

– rw.fast-crewrite-core is a similar wrapper for fast-crw,

– rw.cresult->data is an alias for car; it just extracts the data component of

the return value of crw or fast-crw

– rw.assmsp, rw.controlp, and rw.cachep are recognizers for (slow) assump-

tions systems, control structures, and (slow) caches, respectively, and

– rw.trace-fast-image is our implementation of trace-image.

ACL2 Code
(defthm rw.trace-fast-image-of-rw.crewrite-core

(implies
(and (logic.termp x)

(rw.assmsp assms)
(rw.controlp control)
(rw.cachep cache)
(booleanp iffp))

(equal (rw.trace-fast-image
(rw.cresult->data
(rw.crewrite-core assms x cache iffp blimit rlimit

anstack control)))
(rw.cresult->data
(rw.fast-crewrite-core (rw.assms-fast-image assms)

352

x
(rw.cache-fast-image cache)
iffp blimit rlimit anstack
control)))))

But this result is only a corollary of a much more complicated proof.

A common difficulty when carrying out inductive proofs about flag functions

(or mutually recursive functions) is that we must simultaneously prove something

about each of the different flags. For instance, consider the theorem above. Here,

we would like to show that in the term mode, the image of crw is produced by

fast-crw. But, in the term mode, when crw and fast-crw rewrite function calls,

they do so by recursively invoking themselves in the list mode. To explain how

these results are related, we will need an inductive hypothesis about the list mode.

Similar circumstances lead us to add additional conjuncts to explain how all of the

other modes operate. Putting all of this together, the resulting lemma takes about

eight pages to write down and involves establishing thirty properties at once. We

present the ACL2 defthm command for this lemma in Appendix C.

Our use of imaging functions allows us to carry out this proof as an ordinary

induction over the definition of crw. This was not the case in our first attempt to

verify fast-crw in ACL2. We had originally formulated our theorem in the following

style:

(defthm rw.trace-fast-image-of-rw.crewrite-core
(implies (and . . .

(assms-are-okayp assms fast-assms)
(cache-is-okayp cache fast-cache))

(equal (rw.trace-fast-image
(rw.cresult->data
(rw.crewrite-core assms x cache iffp blimit

rlimit anstack control)))

353

(rw.cresult->data
(rw.fast-crewrite-core fast-assms x fast-cache

iffp blimit rlimit anstack
control)))))

Unfortunately, this formulation required a more sophisticated induction. Since

crw and fast-crw use different kinds of assumptions systems and caches, they recur

in different ways: where crw adds a slow trace to its slow cache, fast-crw adds a

fast trace to its fast cache, etc. To reconcile this difference, we would have needed

to induct in such a way that assms is instantiated as in crw while fast-assms is

instantiated as in fast-crw, and similarly for cache and fast-cache.

Introducing an induction scheme like this in ACL2 is, in principle, easy. All we

need to do is write a new function, say merged-crw, to simultaneously mimic the

behaviors of crw and fast-crw. Merged-crw would take as arguments a slow and

fast assumptions structure, a slow and fast cache, and all of other arguments that crw

and fast-crw share. It would return five values: the slow trace generated by crw,

the fast trace generated by fast-crw, the updated slow cache, the updated fast

cache, and the alimitedp flag. Then, we should show the correspondence between

merged-crw and crw, and between merged-crw and fast-crw. Finally, we

would carry out our proof by induction using the definition of merged-crw.

But introducing merged-crw seemed practically difficult. It is not entirely

simple to generate merged-crw from the definition of crw. For instance, where

crw binds a-trace to the result of recursively rewriting a, we will now need to

introduce two bindings, one for the fast trace and one for the slow trace. Meanwhile,

writing merged-crw by hand would mean it had to be updated whenever we change

crw, which we found unappealing.

By using imaging functions, we can avoid the need for merged-crw alto-

354

gether. The only variables in our new formulation of the theorem are the arguments

to crw, and using images we can simply compute the appropriate fast assumptions

structure and fast cache from the slow ones. The proof is entirely straightforward,

but there are a lot of cases to cover. When ACL2 prints just its summary of the

induction scheme, 4,200 lines of output are generated. To enable ACL2 to manage

such a large proof, we give its rewriter a “lean” theory where most unnecessary rules

are disabled. We also provide hints regarding how to expand the definitions of the

two rewriters, and instruct it to print very little since so many goals would be printed.

With these optimizations, ACL2 takes about 11 minutes to finish the proof.

9.11 Rewriting Clauses

So far, we have focused on the rewriting of individual terms. We now explain

how we can rewrite the literals of a goal clause, [a1, . . . , ak].

Recall that in Sections 7.2 and 7.3, we introduced the update clause and update

clause iff rules, which effectively explain how a clause [a1, . . . , ak] can be simplified to

[a1
′, . . . , ak

′] when given proofs of ai ≡ ai
′ for each i. We cannot use these rules to carry

out rewriting on the literals of a clause, because our rewriter produces conditional

equivalences of the form [assms →] ai ≡ ai
′ rather than unconditional equivalences.

Instead, we will need a new, special purpose routine, which we call crw-clause.

Roughly speaking, for each literal in the goal clause, crw-clause must first

create the initial assumptions system to use (by assuming the negations of the other

literals), and then call upon crw to rewrite the literal under these assumptions. This

process is complicated by a couple of optimizations. First, to avoid unnecessary work,

crw-clause stops early if contradictory assumptions are observed or if an obviously

true literal is produced. Second as we rewrite the later literals, we would like to

assume the negations of the previously simplified literals, rather than the original

355

literals. That is, suppose we have rewritten a1 to a1
′ and are now rewriting a2. We

would like to assume the negation of a1
′, rather than a1, because a1

′ may be “more

canonical” than a1, and hence more useful as an assumption.

Like the revappend disjunction and aux update clause rules, we process the

clause in a tail-recursive style where the literals are split up into a “todo” list,

[t1, . . . , tn], and a “done” list, [d1, . . . , dm]. Initially, all of the literals in the goal

clause, a1, . . . , ak, are put onto the todo list, and the done list is empty. At each step

in the computation, we take t1 from the todo list, rewrite it, and place the resulting t1′

onto the done list. Ignoring early termination, we eventually reach an empty todo list

and a done list which contains the simplified terms in reverse order, i.e., [ak ′, . . . , a1
′].

Our main goal for crw-clause is to show that we may construct a proof of

the original clause when we are given (1) a proof of every formula which is forcibly

assumed during the course of rewriting, and (2) if crw-clause did not terminate

early, a proof of the simplified clause, i.e., the final done list, [ak ′, . . . , a1
′].

To carry out this proof, we work on a step-by-step basis. At every step, we

say that T1...n ∨D1...m is the step goal, where Ti is the term formula for each ti, and

Di is the term formula for each di. The key part of our proof is to show that we can

prove the step goal for a step when we are given (1) proofs of all the forced goals

encountered during the rewriting of this step, and (2) if we do not stop early on this

step, a proof of the step goal for the next step.

The initial step goal is exactly the formula for the goal clause. Meanwhile,

if crw-clause does not terminate early, our final step goal is the formula for the

simplified clause. So, we can inductively compose the step proofs to arrive at the

main result for crw-clause as a whole.

How do we take and justify each step?

356

We begin by constructing an assumptions structure wherein t2, . . . , tn and

d1, . . . , dm are assumed to be false: we begin with the empty assumptions structure,

then assume-left the t2, . . . , tn, and assume-right the d1, . . . , dm. Keeping the

assumptions in separate lists allows us to combine the individual rewrites without

carrying out excessive propositional manipulation.

Next, before we make any attempt to rewrite t1, we ask the assumptions

structure if it has observed any contradictory assumptions. If so, we stop early because

we can prove the goal. In particular, recall from Section 8.3 that in such a case, we

may use the equivalence trace which exhibits the contradiction to prove the hypbox

formula, which is T2...n ∨D1...m. By trivial expansion of this proof, we can arrive at

T1...n ∨D1...m, our step goal.

Otherwise, when no contradiction has been observed, we call crw to rewrite

t1, under these assumptions, maintaining iff, with an empty cache, and using a

control structure and limitations given to crw-clause by the user. Let the rhs of

the resulting trace be t1′. By the justification of crw, if we are given proofs of the

forced goals, then we may construct a proof of P ∨ (iff t1 t1
′) = t, where P is the

hypbox formula. In other words, we may establish

(T2...n ∨D1...m) ∨ (iff t1 t1
′) = t.

We now inspect t1′ to see if it is an obvious term. Normally, this is not the case,

and we continue rewriting the other literals. The new todo list becomes [t2, . . . , tn]

and the new done list becomes [t1′, d1, . . . , dm]. To justify this, we need to explain

how to recover a proof of the original step goal, (t1 6= nil∨T2...n)∨D1...m, when given

– a proof of this new step goal, T2...n ∨ (t1′ 6= nil ∨D1...m), and

– a proof of the conclusion from crw, (T2...n ∨D1...m) ∨ (iff t1 t1
′) = t.

357

We construct this proof by cases on n and m. If n and m are both zero, our goal

follows by the substitute iff into literal rule. Otherwise, we make use of some auxiliary

lemmas, shown below. If n > 0 and m > 0, we use lemma 1. If n > 0 and m = 0, we

use lemma 2. And if n = 0 and m > 0, we use lemma 3. The name “ccstep” is short

for “crw-clause step.”

Derived Rule 159. Ccstep lemma 1
L ∨ t2 6= nil ∨ R
(L ∨ R) ∨ (iff t1 t2) = t
(t1 6= nil ∨ L) ∨ R

Derivation. (108)

L ∨ t2 6= nil ∨ R Given
L ∨ R ∨ t2 6= nil Dj. commute or
(L ∨ R) ∨ t2 6= nil Associativity
(L ∨ R) ∨ (iff t1 t2) = t Given
(L ∨ R) ∨ t1 6= nil Dj. sub. iff into literal
t1 6= nil ∨ L ∨ R Commute or
(t1 6= nil ∨ L) ∨ R Associativity

Derived Rule 160. Ccstep lemma 2
L ∨ t2 6= nil
L ∨ (iff t1 t2) = t
t1 6= nil ∨ L

Derivation. (86)

L ∨ t2 6= nil Given
L ∨ (iff t1 t2) = t Given
L ∨ t1 6= nil Dj. sub. iff into literal
t1 6= nil ∨ L Commute or

358

Derived Rule 161. Ccstep lemma 3
t2 6= nil ∨ R
R ∨ (iff t1 t2) = t
t1 6= nil ∨ R

Derivation. (88)

t2 6= nil ∨ R Given
R ∨ t2 6= nil Commute or
R ∨ (iff t1 t2) = t Given
R ∨ t1 6= nil Dj. sub. iff into literal
t1 6= nil ∨ R Commute or

Note that aside from the choice of lemma to use, the cost of performing this

step is not dependent upon n or m. This is made possible because of our partitioning

of assumptions into left and right lists, so the formulas for our rewrite traces provide

easy access to the disjunctions of the Ti and Di.

Finally, we need to address the case where t1′ is an obvious term. Here, we

stop early because we can prove the step goal given only proofs of the forced goals

from the rewrite. As above, the particulars of the proof depend upon n and m. If n

and m are zero, then there are no assumptions and the step goal is simply t1 6= nil,

and this may be derived as follows:

t1
′ 6= nil Obvious term

(iff t1 t1
′) = t Conclusion from crw

t1 6= nil Substitute iff into literal

Otherwise, if n or m is nonzero, we make use of a simple lemma:

Derived Rule 162. Ccstep lemma 4
t2 6= nil
P ∨ (iff t1 t2) = t
t1 6= nil ∨ P

359

Derivation. (87)

t2 6= nil Given
P ∨ t2 6= nil Expansion
P ∨ (iff t1 t2) = t Given
P ∨ t1 6= nil Dj. sub. iff into literal
t1 6= nil ∨ P Commute or

And our derivation begins as follows:

t1
′ 6= nil Obvious term

(T2...n ∨D1...m) ∨ (iff t1 t1
′) = t Conclusion from crw

t1 6= nil ∨ (T2...n ∨D1...m) Ccstep lemma 4

At this point, if m is zero, then the last line above is our step goal. Otherwise, when

m > 1, an associativity step produces the step goal, T1...n ∨D1...m.

360

Chapter 10

Tactics

In the past few chapters, we have presented some tools for simplifying clauses,

including a clause splitting procedure, an if-lifting routine, and a rewriter. Each of

these techniques may be applied to a goal clause to obtain some new goals. And,

given proofs of these new goals, we can recover a proof of the original goal. Because

of this, we can compose these techniques to find proofs in a goal-directed manner.

Since discovering proofs usually involves many applications of rewriting, split-

ting, lifting, and other techniques, it would be tedious for users to explicitly manage

proofs by directly working with our various clause simplifiers. Instead, we have de-

veloped a tactic system which ties these tools together.

Tactics were introduced as a way to implement goal-directed proofs in the

Edinburgh LCF [30] system, and are now used in many theorem provers such as

HOL [33], and HOL Light [40]. In the original Edinburgh LCF system, a tactic, t,

is a function which takes a goal to prove, g, and produces (1) a new list of subgoals,

g1, . . . , gn, which, taken all together, imply the original goal, and (2) a function, v,

called a validation, which, given proofs of g1, . . . , gn, should construct a proof of g.

Since our system is first-order, we cannot use higher-order functions to imple-

ment validations. Instead, we implement each tactic as a pair of functions: one which

applies the tactic (analogous to t), and one which justifies its use (analogous to v).

Since we cannot dynamically construct validations, our approach is far less flexible

than LCF-style systems and we face certain implementation challenges.

361

1. Information collected during the application of a tactic may be needed during its

validation. For instance, if we apply our “limited” if-lifting routine to a goal,

our validation function needs to know what limit we used. In an LCF-style

system, this information might simply be encoded into the definition of v. In

our system, we need some mechanism for storing this information in the result

of the application function, and for retrieving it in the validation function.

2. We cannot dynamically compose existing validation functions to create new

validations. That is, in an LCF-style system, suppose that t1(g1) = 〈[g2], v1〉,

and t2(g2) = 〈[g3], v2〉. Now, v1 ◦ v2 is a validation that establishes g1 when

given a proof of g3, and no special infrastructure is needed for managing such

compositions. In our system, we need some way to remember which tactics have

been applied, so we can call their validation functions at the appropriate times.

To address these issues, we introduce proof skeletons. Each skeleton is a struc-

ture that keeps track of the goals at a particular point in the proof attempt, and also

records how these goals were produced. Our application functions operate on proof

skeletons, and produce either an extension of their input skeleton or nil to indicate

failure. Concretely, each skeleton is an aggregate of the following components:

– goals, a list of clauses which still need to be proven,

– tacname, the name of the tactic used to produce these goals,

– extras, any information which the validation function will need to justify this

reduction, and

– history, the proof skeleton to which this tactic was applied.

362

Special handling is required for the initial skeleton. When we would like to

prove a new formula, F , we create a skeleton whose only goal is formed by compiling

F into a clause (as described in Section 7.1), and whose tacname, extras, and history

are all nil. The nil tacname identifies the skeleton as the starting point for our

proof.

Given a skeleton, s, with goal clauses g1, . . . , gn, applying a tactic involves

using some proof technique (if-lifting, rewriting, . . .) to simplify some or all of the

gi. This process leaves us with a new list of goals, h1, . . . , hm. If all of these new goals

are provable, then each gi should also be provable. We produce a new skeleton, s′,

whose goals are the hi, whose history is s, whose tacname identifies the tactic which

was used (so we can later determine which validation function to call), and whose

extras are any additional information which will be needed to prove the gi when given

proofs of the hi.

Our ordinary proof process begins with the creation of an initial skeleton, s0,

from our goal formula, F . We then choose some tactic to apply to s0, producing s1;

we then choose another tactic to apply to s1, producing s2, and so on. Continuing

this process, if we are able to reach a skeleton, sn, with no goals remaining, we have

successfully found a proof of F .

To construct the proof, we need to call upon the validation functions for the

tactics we have used. Each validation function takes as inputs (1) the skeleton, s,

produced by applying the tactic to the previous skeleton, and (2) proofs of all of the

goals of s. Letting h be the history for s, the validation function is responsible for

constructing proofs of all of the goals of h. Notably, it can inspect the extras of s. The

idea is for the application function to store information for the validation function to

use (such as the limit for if-lifting) in the extras of the skeleton it produces.

To prove our original goal, F , we begin with our final skeleton, sn. Since sn

363

has no remaining goals, its validation function does not need any input proofs, and

can construct proofs of the goals for sn−1. We give these proofs to the validation

function for sn−1, which produces proofs of the goals for sn−2, and so on. Eventually,

we arrive at a proof of the goal for s0, namely comp(F) 6= nil. Then, via the compile

formula rule, we may derive F .

10.1 Implementing Tactics

As examples of how tactics may be implemented, we now describe our split-

first and split-all tactics. These tactics combine the if-lifting, clause splitting,

and clause cleaning routines from Chapter 7 into a single reduction. Given a skeleton,

s, with goals [g1, . . . , gn], the split-first tactic applies this reduction only to the

first goal, g1, while split-all applies it to all of the goals.

Early in the project, we decided to implement -first and -all versions of

many of our tactics, thinking that it would be useful to either focus upon the first

goal or work on all the goals together. We also imagined developing a reordering

tactic which would allow the user to bring a particular goal to the front. In practice,

we mainly use -all tactics, but -first tactics are also sometimes useful. We have

not needed to use reordering, so although it would be straightforward to implement,

we have not done so.

Before discussing our split-first and split-all tactics, we introduce our

combined reduction, clause.split, which applies if-lifting, clause splitting, and

clause cleaning. Clause.split is a function of four arguments: liftp, llimit, and

slimit, described below, and x, a clause to operate on. It returns two values as

a pair of the form (progressp . subgoals), where progressp indicates whether any

simplification has taken place, and subgoals are the new clauses that x has been split

into. It operates in three phases:

364

1. If liftp is t, we try to apply if-lifting to the literals in the clause. If the llimit is

zero, we apply our fixed-point function, lift, to lift each literal fully. Otherwise,

we use our limited lifting algorithm, with llimit as the maximum number of tests

with which to split each literal.

2. We then apply our clause-splitting routine to the resulting clause. If the slimit

is zero, we use the unlimited routine which will split based on every top-level

if in each literal. Otherwise, we use our limited splitting routine so that at

most slimit splits are permitted.

3. Finally, we call our clause cleaning routine on the resulting goals, which elimi-

nates any redundant subclauses, useless literals, and so on, that may have been

introduced in the above phases.

To justify the use of clause.split, we introduce a typical builder function,

clause.split-bldr, which takes the same arguments as clause.split but also

expects to be given proofs of the resulting clauses. This function chains together the

justifications of if-lifting, clause splitting, and clause cleaning that were presented in

Chapter 7, and it is straightforward to prove it is well-typed, relevant, and faithful.

In ACL2, we have the following theorems:

ACL2 Code
(defthm logic.appealp-of-clause.split-bldr

(implies (and (logic.term-listp x)
(true-listp x)
(consp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(cdr (clause.split liftp llimit slimit x)))
(logic.strip-conclusions proofs)))

(logic.appealp

365

(clause.split-bldr liftp llimit slimit x proofs))))

(defthm logic.conclusion-of-clause.split-bldr
(implies (and (logic.term-listp x)

(true-listp x)
(consp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(cdr (clause.split liftp llimit slimit x)))
(logic.strip-conclusions proofs)))

(equal (logic.conclusion
(clause.split-bldr liftp llimit slimit x

proofs))
(clause.clause-formula x))))

(defthm logic.proofp-of-clause.split-bldr
(implies (and (logic.term-listp x)

(true-listp x)
(consp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(cdr (clause.split liftp llimit slimit x)))
(logic.strip-conclusions proofs))

(logic.term-list-atblp x atbl)
(logic.proof-listp proofs axioms thms atbl)
... various arities are correct ...
... various formulas are thms ...
... various formulas are axioms ...
)

(logic.proofp
(clause.split-bldr liftp llimit slimit x proofs)
axioms thms atbl)))

With clause.split in place, we can begin implementing our split-first

tactic. To implement a tactic, we need to provide an application function and a vali-

dation function. Our application function, tactic.split-first-tac, is as follows.

366

Definition: tactic.split-first-tac
(pequal* (tactic.split-first-tac liftp llimit slimit skelly)

(let ((goals (tactic.skeleton->goals skelly)))
(if (not (consp goals))

;; fail: no clauses to prove
nil

(let* ((clause1 (car goals))
(split (clause.split liftp llimit slimit

clause1))
(split-len (len (cdr split))))

(if (not (car split))
;; fail: no progress was made
nil

(tactic.extend-skeleton
(app (cdr split) (cdr goals))
’split-first
(list liftp llimit slimit split-len)
skelly))))))

The failure cases are uninteresting, so suppose the goals of skelly are g1, . . . , gn,

and that when we call clause.split upon g1, progress is made and we obtain a

new list of subgoals, h1, . . . , hk. In this case, we produce a new skeleton by calling

tactic.extend-skeleton.

– The new goals are formed by appending [h1, . . . , hk] to [g2, . . . , gn]. In other

words, we replace g1 with the subgoals it has split into.

– The tacname is split-first.

– The extras include the liftp, llimit, and slimit, which will be needed by the

validation function when it calls clause.split-bldr. We also record k, which

will be used by the validation function to identify which of its input proofs

establish h1, . . . , hk, and which input proofs establish g2, . . . , gn.

367

– The history of the new skeleton is skelly, the original skeleton.

Our validation function is tactic.split-first-compile. This function will

be given the skeleton produced by tactic.split-first-tac and a list of proofs

which establish the new goals, i.e., h1, . . . , hk, g2, . . . , gn, and must produce a list of

proofs which establish g1, . . . , gn.

Definition: tactic.split-first-compile
(pequal*
(tactic.split-first-compile skelly proofs)
(let* ((history (tactic.skeleton->history skelly))

(orig-goals (tactic.skeleton->goals history))
(clause1 (car orig-goals))
(extras (tactic.skeleton->extras skelly))
(liftp (first extras))
(llimit (second extras))
(slimit (third extras))
(split-len (fourth extras))
(proofs1 (firstn split-len proofs))
(other-proofs (restn split-len proofs))
(clause1-proof (clause.split-bldr liftp llimit slimit

clause1 proofs1)))
(cons clause1-proof other-proofs)))

In other words, we extract from the extras the liftp, llimit, slimit, and k, and

extract from the goals of the history g1. We partition the input proofs into two parts:

proofs1, the proofs of h1, . . . , hk, and other-proofs, the proofs of g2, . . . , gn. We then

use the clause.split-bldr to assemble a proof of g1, giving it the limits, original

goal g1, and the proofs of h1, . . . , hk as inputs. Finally, we add this proof of g1 to the

proofs of g2, . . . , gn, to arrive at the desired result.

We now turn our attention to the split-all tactic. To begin with, we im-

plement clause.split-list, a new function which takes liftp, llimit, and slimit

368

as before, and using these limits, applies clause.split to every clause in a list of

clauses. Suppose our input clauses are g1, . . . , gk, and letGi be the list of clauses which

results from applying clause.split to gi. Then, clause.split-list returns the

pair (progressp . [G1, . . . , Gk]), where progressp is true if any call of clause.split

made progress. It is easy to implement clause.split-list-bldr, which takes as

arguments the limits which were used, the input clauses, and a list of proof lists

that establish the Gi, and produces proofs of g1, . . . , gk, by repeatedly calling upon

clause.split-bldr.

Our application function is tactic.split-all-tac. The only complication

is that the new goals which a tactic produces must be an ordinary list of clauses,

whereas clause.split-list produces a list of clause lists. To correct for this we

use a simple flattening function, and we also store the lengths of the lists in the extras

so our validation function can partition its input proofs appropriately for clause.-

split-list-bldr.

Definition: tactic.split-all-tac
(pequal* (tactic.split-all-tac liftp llimit slimit skelly)

(let ((goals (tactic.skeleton->goals skelly)))
(if (not (consp goals))

;; fail: no clauses to prove
nil

(let* ((split (clause.split-list liftp llimit
slimit goals))

(split-lens (strip-lens (cdr split)))
(new-goals (simple-flatten (cdr split))))

(if (not (car split))
;; fail: no progress was made
nil

(tactic.extend-skeleton new-goals
’split-all
(list liftp llimit slimit

split-lens)

369

skelly))))))

Our validation function, tactic.split-all-compile, is shown below. We

simply extract the necessary information from the extras and call upon the clause.-

split-list-bldr to construct proofs of the original goals.

Definition: tactic.split-all-compile
(pequal* (tactic.split-all-compile x proofs)

(let* ((history (tactic.skeleton->history x))
(orig-goals (tactic.skeleton->goals history))
(extras (tactic.skeleton->extras x))
(liftp (first extras))
(llimit (second extras))
(slimit (third extras))
(lens (fourth extras))
(part-proofs (partition lens proofs)))

(clause.split-list-bldr liftp llimit slimit
orig-goals part-proofs)))

We have now discussed the implementation of two tactics. How do we know

to call tactic.split-all-compile to validate split-all skeletons, and to call

tactic.split-first-compile to validate split-first skeletons?

The basic story is straightforward, but we defer some complications to the

next section. We begin by implementing a function which can act as a validation

for any of our tactics. This is done by consulting the tactic name and calling upon

the appropriate validation function. Much like rw.compile-trace-step from Sec-

tion 9.9, this is a first-order approximation of a polymorphic call, with the obvious

limitation that adding new tactics requires us to modify the function.

Definition: tactic.compile-skeleton-step
(pequal* (tactic.compile-skeleton-step x proofs)

;; note: simplified definition

370

(let* ((tacname (tactic.skeleton->tacname x)))

(cond ((equal tacname ’split-first)
(tactic.split-first-compile x proofs))

((equal tacname ’split-all)
(tactic.split-all-compile x proofs))

. . . and so on for the other tactics . . .
)))

Given that we can compile any skeleton step, it is straightforward to compile

entire skeletons. We do this with tactic.compile-skeleton, which repeatedly calls

our step compiler until we reach the initial skeleton.

Definition: tactic.compile-skeleton
(pequal* (tactic.compile-skeleton x proofs)

;; note: simplified definition
(if (not (tactic.skeleton->tacname x))

proofs
(tactic.compile-skeleton
(tactic.skeleton->history x)
(tactic.compile-skeleton-step x proofs))))

10.2 Worlds

Originally, our approach to compiling skeletons was as we have just described.

But to support more efficient proof checking at higher levels of our verified proof

checkers, we found that a slightly more complicated approach was needed.

Consider evaluation. To justify uses of our evaluator for low-level proof check-

ers such as logic.proofp, we construct ordinary, fully expansive proofs using a

builder function that follows the argument laid out in Section 6.4. Whenever the

evaluator uses a function’s definition, the resulting proof contains an Axiom appeal

for that definition, which will need to be checked by logic.axiom-okp.

371

But eventually, in our bootstrapping process, we arrive at a higher-level proof

checker which can justify evaluations in one step. To check an evaluation step which

claims to show x = c, we would need to run our evaluator on x and ensure that it

produces c. But which definitions do we give to our evaluator, and how do we know

they are all axioms of the current theory?

A simple approach would be to use the extras field of the evaluation appeal

to save the definitions to use. Then, to accept the proof step, the checking function

would need to ensure these definitions are axioms. But this would not be very efficient.

We typically perform evaluation using all of the definitions of the current history, and

this list can grow quite long. Our complete system includes thousands of definitions,

so if evaluation was used frequently during the course of a proof, we would end up

repeatedly checking that these definitions are axioms. A more efficient approach

would be to decide upon a fixed list of definitions to use for evaluation throughout

a proof. We could then check these definitions once and for all, at the start of the

proof, rather than upon every evaluation step.

A similar situation arises in rewriting. Here, the control structure to use

includes definitions, and also includes rewrite rules which have been organized into

a theory. Unlike definitions, we may wish to use a few different theories during

the course of a proof. But we would still like to check the validity of these control

structures ahead of time, rather than for each individual use of rewriting.

To accomplish this, we introduce a new structure, called the world. We can

check the well-formedness of the world ahead of time, then use it to generated well-

formed control structures.

A world is an aggregate with many fields. Some fields are quite simple, such

as primaryp, secondaryp, directp, and negativep flags for the assumptions control

system, and forcingp, betamode, blimit, rlimit, defs, noexec, and depth settings for

372

the rewriter’s control structure. Each world also has an index which can be used as

an identifier when a single proof involves multiple worlds. But the most interesting

fields are theories and allrules. The theories field provides a mapping from names

(symbols) to theories, while allrules is simply a list of all the rewrite rules that have

been introduced so far. Given a world and the name of some theory, we can construct

a control structure for the rewriter to use.

We say a world is well-formed with respect to an arity table when all of its

definitions and rewrite rules are well formed. Similarly, we say a world is well-formed

with respect to its environment (i.e., the axioms and theorems) when all of its def-

initions are axioms, and all of its rules are theorems. When a world is well-formed

in both senses, any control structure we construct from it is also well-formed and

satisfies the faithfulness criteria for our rewriter.

A well-formed world can also be manipulated in many ways which preserve its

well-formedness. Simple changes to settings like directp, betamode, and noexec that

do not alter the theories or allrules fields are the clearest examples. But many theory

changes are also acceptable, e.g., removing rules from a theory cannot compromise

the well-formedness of a world. Similarly, we can modify existing rules by adding

syntactic restrictions or backchain limits, since these are merely annotations which

do not play a part in the rule’s formula. We can even create new theories or add rules

to existing theories, so long as the new rules are among the other theories or allrules,

and hence have already been checked.

We begin each proof attempt with a well-formed world, say w. This world

will be used to form the control structures used by our rewriting tactics until some

world-changing tactic is applied, producing a new world, w′. We have six types of

world-changing tactics, each of which are well-formedness preserving:

373

– simple-world-change, which can be used to make changes to the various flags

and limits such as forcingp and directp,

– update-noexec, which can add and remove functions from the noexec list,

– create-theory, which can create a new theory,

– e/d, which can be used to change a theory by adding and removing rules (the

name comes from ACL2, where this is called enabling and disabling),

– restrict, which can add new syntactic restrictions to a rule in a theory, and

– cheapen, which can add backchain limits to a rule in a theory.

After a world changing tactic is applied, the new world, w′, will be used for

subsequent applications of our rewriting tactics, until another world-changing tactic

is used.

World-changing tactics are like other tactics in that they produce a new proof

skeleton. However, none of our world-changing tactics have any effect upon the goals

of the skeleton they are extending, so their validation functions are the identity.

Instead, the main purpose of world-changing tactics is to explain which world to use

at each point in the proof.

For each world-changing tactic, we introduce a function called a world compiler

which, given the skeleton produced by the application function, and the current world,

produces the updated world. For instance, consider the create-theory tactic. We

begin by writing a function, (tactic.create-theory name world), which produces

a new world by (1) incrementing the index, and (2) either adding a new, empty theory

of the given name, or leaving the theories unchanged when this name is already in

use as a theory. Our application function, then, is tactic.create-theory-tac.

374

Definition: tactic.create-theory-tac
(pequal* (tactic.create-theory-tac name skelly)

(tactic.extend-skeleton (tactic.skeleton->goals skelly)
’create-theory
name
skelly))

Since the goals of the skeleton are unchanged, the validation function is sim-

ply the identity on its input proofs. Meanwhile, the corresponding world compiler

function is tactic.create-theory-compile-world.

Definition: tactic.create-theory-compile-world
(pequal* (tactic.create-theory-compile-world skelly world)

(let ((name (tactic.skeleton->extras skelly)))
(tactic.create-theory name world)))

After introducing similar world compilers for our other world-changing tactics,

we can create a world compiler for an arbitrary proof step. Given a skeleton and the

previous world, tactic.compile-worlds-step produces the updated world after

applying this tactic.

Definition: tactic.compile-worlds-step
(pequal*
(tactic.compile-worlds-step x world)
(let ((tacname (tactic.skeleton->tacname x)))

(cond ((equal tacname ’simple-change-world)
(tactic.simple-change-world-compile-world x world))
((equal tacname ’update-noexec)
(tactic.update-noexec-compile-world x world))
((equal tacname ’create-theory)
(tactic.create-theory-compile-world x world))
((equal tacname ’e/d)
(tactic.e/d-compile-world x world))
((equal tacname ’restrict)
(tactic.restrict-compile-world x world))

375

((equal tacname ’cheapen)
(tactic.cheapen-compile-world x world))
(t
;; Other tactics do not change the world
world))))

Accordingly, given the initial world for a proof skeleton, it is straightforward

to construct a list of all the worlds used throughout the proof, using the function

tactic.compile-worlds.

Definition: tactic.compile-worlds
(pequal* (tactic.compile-worlds x initial-world)

(if (not (tactic.skeleton->tacname x))
(list initial-world)

(if (tactic.world-stepp x)
(let* ((prev-worlds (tactic.compile-worlds

(tactic.skeleton->history x)
initial-world))

(prev-world (car prev-worlds)))
(cons (tactic.compile-worlds-step x prev-world)

prev-worlds))
(tactic.compile-worlds (tactic.skeleton->history x)

initial-world))))

Since each world-changing tactic is well-formedness preserving, the list of

worlds produced by tactic.compile-worlds are all well-formed, so long as the

initial world is well-formed.

Previously, we have suggested that the inputs to validation functions are (1)

the skeleton produced by the application function, and (2) a list of proofs of the

goals for that skeleton. Many of our validation functions still have this format. But

for other tactics which make use of rewriting or evaluation, the validation function

376

may also take the list of worlds as a parameter. Our step compiler, then, is actually

defined as follows:

Definition: tactic.compile-skeleton-step
(pequal* (tactic.compile-skeleton-step x worlds proofs)

(let* ((tacname (tactic.skeleton->tacname x)))

(cond ((equal tacname ’split-first)
(tactic.split-first-compile x proofs))

((equal tacname ’split-all)
(tactic.split-all-compile x proofs))

((equal tacname ’crewrite-all)
(tactic.crewrite-all-compile x worlds proofs))

. . . and so on for the other tactics . . .
)))

And, for our whole-skeleton compiler, we have:

Definition: tactic.compile-skeleton
(pequal* (tactic.compile-skeleton x worlds proofs)

(if (not (tactic.skeleton->tacname x))
proofs

(tactic.compile-skeleton
(tactic.skeleton->history x)
worlds
(tactic.compile-skeleton-step x worlds proofs))))

How does tactic.crewrite-all-compile know which world to use? Each

world-changing tactic increments the world’s index, and the application function for

crewrite-all records the index of the current world as an extra in the skeleton; the

validation function, tactic.crewrite-all-compile can then use this index to find

the proper world.

377

10.3 Tactic Library

We have many tactics besides split-first and split-all, which we now

cover in alphabetical order.

Cleanup

The cleanup tactic takes no parameters besides the skeleton to operate on. It

runs the clause cleaning algorithm from Section 7.4 to simplify all of the outstanding

goals, and fails unless progress is made.

Cleaning was not always done by our splitting tactics, but since it is now built

into clause.split, having a separate cleanup tactic is mostly redundant. One

slight advantage to using cleanup is that more subsumed clauses may be eliminated.

That is, suppose our outstanding goal clauses are g1, . . . , gn and we run split-all.

When we use split-all, each gi splits into a list of subgoals, say Gi = [gi,1, . . . , gi,ki].

Our clause cleaning routine is then run on each of these lists separately. So, g1,1 will

be eliminated if it is subsumed by g1,2, but not if it is subsumed by g2,1. By running

the cleaning routine on all of the outstanding goals, we may be able to eliminate

additional subsumed clauses.

Conditional Eqsubst

The conditional-eqsubst-first and conditional-eqsubst-all tactics

allow us to simplify a goal by using a conditional equality. Both the -first and

-all forms take three arguments besides the skeleton to operate on, called hyp, lhs,

and rhs, each of which should be terms. For the tactic to produce a sensible result,

when the hyp holds, the lhs and rhs should be provably equal.

Let g = [t1, . . . , tn] be a goal clause, and let ti′ = repl(ti, lhs, rhs) for all i.

Then, conditional equality substitution splits g into three subgoals:

378

1. The correctness of the replacement, [(not hyp), (equal lhs rhs)], which shows

that indeed the hyp implies that lhs and rhs are equal;

2. The applicability of replacement, [hyp, t1, . . . , tn], which shows that if the hyp

is false, the goal clause holds for some other reason;

3. The post-replacement goal, [t1′, . . . , tn′], formed by replacing lhs by rhs every-

where throughout the goal clause.

To justify this reduction, we need to be able to derive the original goal clause

when given proofs of the formulas for these subgoals. We make use of a couple of

auxiliary rules.

Derived Rule 163. Disjoined = nil from negative lit

P ∨ (not a) 6= nil
P ∨ a = nil

Derivation. (19)

x = nil ∨ (not x) = nil Th. not when nnil
(not x) = nil ∨ x = nil Commute or
(not a) = nil ∨ a = nil Instantiation
P ∨ (not a) = nil ∨ a = nil Expansion
P ∨ a = nil Given
P ∨ a = nil Dj. mp2

Derived Rule 164. Conditional eqsubst lemma1

(not hyp) 6= nil ∨ (equal a b) 6= nil
hyp = nil ∨ a = b

Derivation. (76)

(not hyp) 6= nil ∨ (equal a b) 6= nil Given
(not hyp) 6= nil ∨ (equal a b) = t Dj. eq. t fr. nnil
(not hyp) 6= nil ∨ a = b Dj. = from eq.

379

a = b ∨ (not hyp) 6= nil Commute or
a = b ∨ hyp = nil Dj. = nil fr. neg. lit
hyp = nil ∨ a = b Commute or

Now, to validate the use of the conditional eqsubst tactic, we can use the

following derivation.

(not hyp) 6= nil ∨ (equal lhs rhs) 6= nil Given 1
hyp = nil ∨ lhs = rhs Cnd. eqsub. lm. 1
hyp = nil ∨ ti = ti

′ Dj. repl. subterm (*a)
t1
′ 6= nil ∨ · · · ∨ tn′ 6= nil Given 3

hyp = nil ∨ t1′ 6= nil ∨ · · · ∨ tn′ 6= nil Expansion
hyp = nil ∨ t1 6= nil ∨ · · · ∨ tn 6= nil Dj. upd. clause *a
hyp 6= nil ∨ t1 6= nil ∨ · · · ∨ tn 6= nil Given 2
(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ (t1 6= nil ∨ · · · ∨ tn 6= nil) Cut
t1 6= nil ∨ · · · ∨ tn 6= nil Contraction

Early in the project, we relied upon the conditional eqsubst tactics, along

with generalization, to carry out destructor elimination [18]. That is, cons is called

a constructor, while car and cdr are said to be destructors. In this case, destructor

elimination involves replacing the expressions (car x) and (cdr x) with some new,

fresh variables.

As a concrete example, suppose we want to apply destructor elimination to

the goal clause

[(not (consp x)), (not (foo (car x))), (not (bar (cdr x))), (baz x y)],

which may be more easily read as an ACL2-style implication,

(implies (and (consp x)
(foo (car x))
(bar (cdr x)))

(baz x y)).

380

We can accomplish this in two phases. First, we use conditional eqsubst,

letting the variables be as follows:

hyp = (consp x),

lhs = x, and

rhs = (cons (car x) (cdr x)).

This generates three subgoals. First, to establish the correctness of the re-

placement, we must show

(implies (consp x)
(equal x (cons (car x) (cdr x)))),

which follows easily from the axiom cons of car and cdr. Next, we must show the

applicability of the replacement,

(implies (and (not (consp x))
(consp x)
(foo (car x))
(bar (cdr x)))

(baz x y)),

which is trivial since it contains complementary literals. Finally, we have the post-

replacement goal, where all occurrences of x have been replaced by (cons (car x)

(cdr x)),

(implies (and (consp (cons (car x) (cdr x)))
(foo (car (cons (car x) (cdr x))))
(bar (cdr (cons (car x) (cdr x)))))

(baz (cons (car x) (cdr x)) y)).

At this point, we would call upon our generalization tactic to replace (car x) and

(cdr x) with fresh variables, say x1 and x2. This leaves us with

381

(implies (and (consp (cons x1 x2))
(foo (car (cons x1 x2)))
(bar (cdr (cons x1 x2))))

(baz (cons x1 x2) y)),

which after trivial rewriting can be simplified to

(implies (and (foo x1)
(bar x2)

(baz (cons x1 x2) y)).

This reduced goal may be easier to prove than the original, particularly if we

have a rewrite rule about (bar (cons a b) c).

We now have a more automatic elimination tactic for car and cdr, and because

of this we no longer make much use of conditional eqsubst. But it may still be a useful

tactic for performing other kinds of destructor elimination.

Crewrite

The crewrite-first and crewrite-all tactics allow us to perform condi-

tional rewriting. Both of these tactics take three arguments besides the skeleton to

operate on: the name of the theory to use, the world, and a “fast” flag that determines

whether crw or fast-crw should be used.

Why would we ever use crw instead of fast-crw? In our bootstrapping

process, before fast-crw is verified, to justify any uses of fast-crw we will need

to call upon crw, anyway. Because of this, it can be more efficient to just use crw

from the beginning and save the traces it produces.

Suppose the goals of the skeleton are [g1, . . . , gn]. In the case of crewrite-

-first, the application function begins by constructing a control structure from the

world, and then calls either crw-clause or fast-crw-clause upon the first goal,

382

g1. If no progress is made, we fail. Otherwise, rewriting produces (1) a possibly

empty list of formulas, f1, . . . , fm, which were forced during the rewrite, and (2) if g1

was not proven, a new subgoal, g1
′.

As a useful optimization, we remove any duplicate forced formulas, so let

h1, . . . , hk be the unique forced formulas. The subgoals for the new skeleton include

(1) the compilation of each hi into a clause, (2) g1
′, if necessary, and (3) g2, . . . , gn.

Meanwhile, the extras include information needed by the validation function, such as

the name of the theory, the (fast-)traces recorded from the calls to (fast-)crw, the

simplified goal g1
′, and the list of unique, forced formulas, h1, . . . , hk.

To reverse this simplification, the validation function begins by recovering this

information from the extras. Using the provided proof of the compiled clause for

each hi, it constructs a proof of the formula hi using the compile formula rule. If

fast-crw was used, we then construct the analogous slow rewrite traces by using

crw to redo the rewrite; otherwise these traces are already available in the extras.

We give the trace compiler the proofs of the hi, the proof for g1
′, and the traces to

compile, to obtain a proof of g1. Along with the provided proofs for g2, . . . , gn, we

now have a proof for each gi.

The situation for crewrite-all is quite similar, except that every goal is

rewritten, and the removal of duplicate forced formulas can be done even for formulas

which were forced in different goal clauses.

Distribute

The distribute-all tactic can be used to simplify the goals by removing

certain variables. We have not implemented an equivalent -first version. Suppose

we have a hypothesis of the form (equal v x) or (equal x v), where v is a variable

and x is a term which does not mention v. Then, we typically would like to eliminate

383

v from the clause by replacing its every occurrence with x. We call this distribution.

In ACL2, distribution is implemented with the function remove-trivial-equiv-

alences, which is slightly more complex than our tactic due to handling equivalence

relations other than equal.

The distribute-all tactic is automatic and takes no arguments besides the

skeleton to operate on. It scans each clause for a term matching (not (equal v x))

or (not (equal x v)), where v is a variable that is not in freevars(x). If such a

literal is found, all occurrences of v throughout the clause are replaced with x.

Distribution can be viewed as a special, more automatic case of our fertilization

tactic, so we will not separately address its justification.

Elim

The elim-first and elim-all tactics are somewhat similar to the conditional

eqsubst tactic, but allow us to carry out destructor elimination [18] for car and cdr

more automatically.

Our tactic is more primitive than ACL2’s destructor elimination procedure.

In particular, ACL2 allows the user to introduce :elim rules which permit destructor

elimination to be applied to user-defined functions and under equivalence relations be-

sides equal, whereas our tactic only supports car and cdr elimination under equal.

ACL2 also supports :generalize rules [12] which allow additional hypotheses to be

added about the new variables as the elimination occurs, but we have no such mech-

anism. Additionally, ACL2 may perform many eliminations simultaneously, while we

perform at most one elimination per clause.

Our elimination tactic attempts to identify a variable which is suitable for

elimination. Early on, made this decision by searching for the first occurrence of

(car v) or (cdr v), for any variable v. But this approach failed to trigger elimi-

384

nation on goals where no destructor occurred, such as (implies (consp x) (foo

x)).

To correct for this, we tried expanding our heuristic to search for occurrences

of (consp v). But this sometimes led us to eliminate “bad” variables. For instance,

on a goal such as

(implies (and (not (consp y))
(bar y)
(consp x))

(foo (car x) (cdr x))),

our tactic would choose to eliminate y instead of x, which is not useful. To correct for

this, we now only consider literals whose form is precisely (not (consp v)), which

we think of as hypotheses of the form (consp v). This way, above, we would only

choose x and not y.

In the end, to choose a “good” variable, our approach is to first scan the goal

for terms of the form (car v) or (cdr v) and accumulate, with duplication, such v

into a list. If there are any such variables, we choose to eliminate one with maximal

duplicity. Otherwise, as a backup plan, we search for the first literal of the form

(not (consp v)), and choose to eliminate v. Otherwise, we fail. In practice, this

heuristic seems to reliably choose good variables to eliminate.

After we have chosen the variable to eliminate, say v, we would like to replace

each occurrence of v with (cons v1 v2), where v1 and v2 are new, fresh variables that

do not occur anywhere else in the clause. This poses a practical problem, because

variables in our logic are represented as symbols, and we have no mechanism for

programmatically generating symbols.

One solution would be to add symbol generation primitives to our logic. In

ACL2, this involves introducing character and string types and an intern function

385

that can create symbols from strings. To keep our logic simpler, we have decided

against doing this.

Another approach would be to change our term representation so that variables

could be indexed. For instance, perhaps we could treat as variables tuples of the form

(var s n) where s is a symbol and n is an index, so that fresh variables could be

generated by simply changing the index. We have decided against doing this since

it would complicate our connection with Common Lisp, where variables are ordinary

symbols.

Instead, our approach is to have the user supply our elimination tactic with

symbols to use. When our elimination tactic needs to choose v1 and v2, it simply

searches the supplied symbols for two variables that are not found in the goal, and

fails if fresh variables are not available. This is not a very satisfying solution, but it

allows us to implement elimination without adding primitives to the logic or changing

our term representation.

Fertilize

The fertilize tactic can be used to eliminate an arbitrary equality hy-

pothesis from a clause. That is, suppose that the literal (not (equal x y)) or

(not (equal y x)) occurs in the clause. In this case, we think of (equal x y) or

(equal y x) as a hypothesis. The fertilization tactic can be used to replace every

instance of x with y throughout the clause.

Cross-fertilization is tried automatically [18] in Boyer-Moore provers. But it

seems difficult to automatically infer when it is desirable to eliminate an equality

hypothesis. In practice, automatic fertilization can be frustrating. The prover often

chooses to fertilize an equality in the wrong direction, or to fertilize equalities that

should be left alone. Because of this, in our ACL2 proof sketch, we have explicitly

386

disabled automatic fertilization except in a few special cases.

Our fertilize tactic is entirely manual. It operates only on the first clause,

and we have no -all version. In addition to the skeleton to operate on, the user must

explicitly provide the tactic with the x and y terms to use. The tactic fails unless the

clause contains the literal (not (equal x y)) or (not (equal y x)). On success,

fertilization produces a new subgoal where every occurrence of x has been replaced

with y.

To justify the fertilize tactic, we make use of a lemma.

Formal Theorem 48. Fertilize lemma1 helper

(not (equal x y)) 6= nil ∨ x = y

Proof.

x 6= y ∨ x = y Prop. schema
x = y ∨ x 6= y Commute or
x = y ∨ (equal x y) = nil Dj. not eq. fr. 6=
x = y ∨ (not (equal x y)) 6= nil Dj. neg. lit fr. = nil
(not (equal x y)) 6= nil ∨ x = y Commute or

Derived Rule 165. Fertilize lemma 1

(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ x = y
, where ti is (not (equal x y))

Derivation.

(not (equal x y)) 6= nil ∨ x = y Fertilize lemma 1
(not (equal x y)) 6= nil ∨ x = y Instantiation
(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ x = y Multi-assoc expansion

We now explain how fertilize may be justified. Suppose our original goal

clause is [t1, . . . , tn]. Let ti′ = repl(ti, x, y) for each i, so the result of fertilization is

387

[t1′, . . . , tn′]. We may assume we are given a proof of this resulting clause. Our first

step is to establish x 6= y ∨ t1 6= nil ∨ · · · ∨ tn 6= nil, as follows.

x 6= y ∨ x = y Propositional schema
x 6= y ∨ ti = ti

′ Disjoined replace subterm (*a)
t1
′ 6= nil ∨ · · · ∨ tn′ 6= nil Given

x 6= y ∨ t1′ 6= nil ∨ · · · ∨ tn′ 6= nil Expansion
x 6= y ∨ t1 6= nil ∨ · · · ∨ tn 6= nil Disjoined update clause *a (*b)

Next, we will establish x = y ∨ t1 6= nil∨ · · · ∨ tn 6= nil. There are two cases.

If some ti is (not (equal x y)), then we can obtain our goal as follows.

(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ x = y Fertilize lemma 1
x = y ∨ t1 6= nil ∨ · · · ∨ tn 6= nil Commute or (*c)

Otherwise, some ti is (not (equal y x)), and we only need to commute the

equality after using our lemma.

(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ y = x Fertilize lemma 1
(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ x = y Disjoined commute =
x = y ∨ t1 6= nil ∨ · · · ∨ tn 6= nil Commute or (*c)

Finally, we combine *b and *c to obtain a proof of our original goal clause.

x = y ∨ t1 6= nil ∨ · · · ∨ tn 6= nil *c
x 6= y ∨ t1 6= nil ∨ · · · ∨ tn 6= nil *b
(t1 6= nil ∨ · · · ∨ tn 6= nil) ∨ (t1 6= nil ∨ · · · ∨ tn 6= nil) Cut
t1 6= nil ∨ · · · ∨ tn 6= nil Contraction

Generalize

The generalize-first and generalize-all tactics can be used to replace

an arbitrary term with a new, fresh variable, either throughout the first clause or

throughout all of the clauses. Suppose we replace some term, t, with a new variable

v. Then, given a proof of the reduced clause, it is trivial to prove the original clause

388

via instantiation, using σ = [v ← t].

Like cross-fertilization, generalization is tried automatically [18] in Boyer-

Moore provers. Also like cross-fertilization, this automation can be frustrating. It

often picks terms for which generalization is not useful, and can leave the user with

strange goals that are not provable, even when the original goal is a theorem. Because

of this, we almost always disable generalization when working with ACL2.

In comparison, our generalization tactics are manual. The user must explicitly

say which term to replace, and provide a new variable as a replacement. Generaliza-

tion fails if the variable is not fresh or if the term does not occur.

Induct

The induct tactic can be used to begin an inductive proof attempt. It applies

only to the first goal; we usually apply it at the beginning of a proof when there is

only one goal.

In Boyer-Moore provers, considerable automation exists to automatically de-

termine which induction schemes might apply to a conjecture [18], and one can also

explicitly instruct the system to induct as suggested by the recursive definition of a

function. We have not implemented this automation, but it should be straightforward

to layer it atop our more explicit tactic.

In addition to the skeleton to operate on, our induct tactic takes as argument

m, a measure term, qs = [q1, . . . , qk], a list of terms which determine the induc-

tion steps, and allsigmas, a list of lists of substitution lists. That is, allsigmas =

[Σ1, . . . ,Σk], where each Σi is a list of substitution lists, Σi = [σ〈i,1〉, . . . , σ〈i,hi〉].

These arguments follow from our description of the induction rule, presented

in Section 2.8, except that the qs given to our tactic are terms instead of formulas.

389

We can view each qi as a formula using the usual interpretation, i.e., qi 6= nil. When

the induct tactic is successful, the first goal is split into many subgoals, namely the

compiled basis step, inductive steps, ordinal steps, and measure steps for this choice

of m, qs, and allsigmas.

Urewrite

The urewrite-first and urewrite-all tactics allow us to perform rewriting

using urw, another rewriter which we have not yet described.

Urw is a simple, light-weight rewriter that makes no assumptions and only

applies unconditional rules. Because of this, no backchaining is required, and only

two modes of operation (term and list) are needed. It uses the same rewrite trace

system and trace compiler as crw, and we have a fast version, fast-urw, in the

same spirit as fast-crw. A minor advantage of urw is that since no assumptions

are made, the proofs generated by compiling its traces typically use the non-disjoined

versions of rules. Because of this, urw can result in shorter fully expansive proofs

than crw.

Use

The use tactic allows us to add an explicit instance of another theorem as a

hypothesis into our clause, and is our analogue of ACL2’s :use hints.

Suppose our goal clause is [t1, . . . , tn], and we have previously proven a 6= nil.

The use tactic allows us to reduce our goal to [(not a), t1, . . . , tn]. Given a proof of

the reduced goal, we can derive the original goal for the use tactic as follows.

a 6= nil Previous proof
(not a) = nil Negative lit from 6= nil
(not a) 6= nil ∨ t1 6= nil ∨ · · · ∨ tn 6= nil Given
t1 6= nil ∨ · · · ∨ tn 6= nil Modus ponens

390

The reduced goal may be easier to prove for a variety of reasons. For instance,

our free-variable matching routine may fail to identify that a certain binding is needed.

In such cases, the use tactic may allow us to explicitly say which binding to use.

Alternately, a hypothesis may be difficult to relieve via rewriting, but if we explicitly

add it to the clause, we may be able to apply techniques besides rewriting to see that

it holds.

The use tactic applies only to the first goal, and we do not have a -all version.

Commonly, if the use tactic is necessary, we call upon it early in the proof, before

splitting has occurred.

Waterfall

Our most sophisticated tactic is waterfall.

In most of our proofs, the real engines of progress are the split-all and

crewrite-all tactics. By alternating the application of these tactics, we effectively

carry out the proof in a breadth-first manner. That is, we rewrite every goal, then

split every resulting subgoal, then rewrite every resulting subgoal from that, etc. We

follow this approach when carrying out most of our proofs.

This strategy makes it easy to carry out staged simplification, wherein the

early parts of a proof are carried out in a limited theory consisting mainly of cheap

rules, and only later are more expensive rules (such as definitions that introduce many

cases) allowed to be used.

But the breadth-first approach can be wasteful when goals are asymmetrically

hard to prove. For instance, in an inductive proof, there are often goals like the

ordinal and measure steps which are easy, and other goals like the main inductive

cases which are much harder. In a cheap theory, we may need only three applications

of rewriting and splitting to reduce each easy goal, but ten applications of rewriting

391

and splitting to reduce the hard goals. In this case, the breadth-first approach will

require us to try to repeatedly rewrite and split the easy goals after they have already

been maximally reduced. If there are many easy goals, this can waste a considerable

amount of time.

The waterfall tactic avoids this problem by rewriting and splitting each goal

in a depth-first manner, until either some limit has been reached or the goals have

become maximally stable. As arguments besides the skeleton to simplify, it takes the

current world, the name of the theory to use, a strategy to apply (described below),

and a maximum number of steps (to ensure termination).

To justify its work, the waterfall builds a tree of waterfall-step structures that

record what has been done to each goal. Each waterfall step is an aggregate of the

following components:

– method, the kind of step this is,

– clause, the clause being proven,

– extras, any additional information needed to justify this step, and

– substeps, any subsidiary waterfall steps which are needed to justify this clause.

We have only implemented four kinds of waterfall steps, but our step structures

are flexible enough that new kinds of steps could be added easily. For each kind of

step, we must be able to prove the clause when given proofs of the clauses for the

substeps. We currently implement the following steps.

– Stop steps are atomic and are used when either (1) we cannot make any more

progress using this theory, or (2) we are forced to stop because we have taken

the maximum number of steps permitted.

392

– Urewrite steps are added when we use our unconditional rewriter. The extras

include the theory name being used, the traces generated, etc. A urewrite

step always has a single substep for the reduced clause.

– Crewrite steps are constructed when we call upon the conditional rewriter.

The extras include the theory name, traces, etc., and the substeps include the

reduced clause and any forced goals, as in the crewrite-first tactic.

– Split steps are introduced when we use clause.split to simplify a clause.

To justify uses of the waterfall tactic, we introduce a compiler which, given

proofs of every Stop step, can transform these trees into proofs.

The order in which steps are tried is determined by the strategy, which is a

list that names the techniques to apply. For instance, we might use the strategy

[crewrite, split]. For each clause encountered during the waterfall, we try each

technique in the strategy in order until one makes progress. We then restart from the

beginning of the strategy on each resulting subgoal.

10.4 Verifying Tactics

A basic expectation of any tactic is that every successful application of the

tactic can be justified. That is, suppose the application function was given some

goals, g1, . . . , gn, and produced new goals, h1, . . . , hm. Then, given proofs of the hi,

along with whatever additional information was saved in the skeleton, the validation

function should be able to construct proofs of each gi. In this LCF system [30], this

property was called validity.

It is not difficult to prove each of our tactics is valid. As a representative

example, we now cover our ACL2 proof sketch of the validity of the split-first

393

tactic. Recall that tactic.split-first-tac takes as arguments various settings

such as liftp, llimit, slimit, and also takes the input skeleton, x. If no progress is

made, it returns nil to indicate failure; otherwise it produces a new output skeleton,

say x′, whose tacname is split-first, and which includes the limits to use as ex-

tras. Meanwhile, recall that the validation function, tactic.split-first-compile,

expects to be given the output skeleton, x′, along with proofs of the goals of x′. From

these inputs, it is intended to produce proofs of the goals of x.

We verify the split-first tactic in a slightly indirect way. First, we introduce

a new function, tactic.split-first-okp, which recognizes when a skeleton is a

valid use of the split-first tactic. Then, we show that:

1. the application function, tactic.split-first-tac, always produces a skele-

ton which is accepted by tactic.split-first-okp, and

2. the validation function, tactic.split-first-compile, can be used to validate

any skeleton satisfying tactic.split-first-okp.

Together, these lemmas establish that every use of tactic.split-first-tac

can be validated by tactic.split-first-compile. As we will see shortly, this

indirection provides a useful benefit: the tactic.split-first-okp function can

be combined with similar recognizers for our other tactics to arrive at a notion of

whole-skeleton validity.

The definition of tactic.split-first-okp is given below. It simply ensures

that the skeleton has the proper tacname and extras, and that the new goals of the

skeleton are properly related to the previous goals.

Definition: tactic.split-first-okp
(pequal*

394

(tactic.split-first-okp x)
(let ((goals (tactic.skeleton->goals x))

(tacname (tactic.skeleton->tacname x))
(extras (tactic.skeleton->extras x))
(history (tactic.skeleton->history x)))

(and (equal tacname ’split-first)
(tuplep 4 extras)
(let ((old-goals (tactic.skeleton->goals history))

(liftp (first extras))
(liftlimit (second extras))
(splitlimit (third extras))
(split-len (fourth extras)))

(and (consp old-goals)
(booleanp liftp)
(natp liftlimit)
(natp splitlimit)
(let* ((clause1 (list-fix (car old-goals)))

(clause1-split (clause.split liftp liftlimit
splitlimit
clause1)))

(and (car clause1-split)
(equal split-len (len (cdr clause1-split)))
(equal (firstn split-len goals)

(cdr clause1-split))
(equal (restn split-len goals)

(cdr old-goals)))))))))

When tactic.split-first-tac is given sensible inputs and succeeds in pro-

ducing a new skeleton, x′, it is trivial to see that x′ satisfies tactic.split-first-okp

by examining the definitions of the two functions. In our ACL2 proof sketch, we have

the following theorem.

ACL2 Code
(defthm tactic.split-first-okp-of-tactic.split-first-tac

(implies
(and (tactic.split-first-tac liftp liftlimit splitlimit x)

395

(booleanp liftp)
(natp liftlimit)
(natp splitlimit)
(tactic.skeletonp x))

(tactic.split-first-okp
(tactic.split-first-tac liftp liftlimit splitlimit x))))

Next, recall that tactic.split-first-compile simply extracts the limits to

use from the extras of its skeleton, and calls upon clause.split-bldr to build the

necessary proofs. Since we have already proven clause.split-bldr is well-typed,

relevant, and faithful, it is easy to arrive at similar theorems for tactic.split-

first-compile.

ACL2 Code
(defthm logic.appeal-listp-of-tactic.split-first-compile

(implies (and (tactic.skeletonp x)
(tactic.split-first-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(tactic.skeleton->goals x))
(logic.strip-conclusions proofs)))

(logic.appeal-listp
(tactic.split-first-compile x proofs))))

(defthm logic.strip-conclusions-of-tactic.split-first-compile
(implies (and (tactic.skeletonp x)

(tactic.split-first-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(tactic.skeleton->goals x))
(logic.strip-conclusions proofs))))

(equal (logic.strip-conclusions
(tactic.split-first-compile x proofs))
(clause.clause-list-formulas
(tactic.skeleton->goals

396

(tactic.skeleton->history x))))))

(defthm logic.proof-listp-of-tactic.split-first-compile
(implies (and (tactic.skeletonp x)

(tactic.split-first-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(tactic.skeleton->goals x))
(logic.strip-conclusions proofs))

(tactic.skeleton-atblp x atbl)
(logic.proof-listp proofs axioms thms atbl)
... various arities are correct ...
... various formulas are thms ...
... various formulas are axioms ...
)

(logic.proof-listp
(tactic.split-first-compile x proofs)
axioms thms atbl)))

For each of our other tactics, we introduce similar -okp functions and carry

out these validity proofs. We can then combine the -okp functions for the separate

tactics into a unified check, which is like another polymorphic call.

Definition: tactic.skeleton-step-okp
(pequal* (tactic.skeleton-step-okp x worlds)

(let ((tacname (tactic.skeleton->tacname x)))
(cond ((not tacname)

t)
((equal tacname ’cleanup)
(tactic.cleanup-okp x))
((equal tacname ’conditional-eqsubst)
(tactic.conditional-eqsubst-okp x))

. . . and so on . . .
((equal tacname ’split-first)
(tactic.split-first-okp x))

. . . and so on . . .
(t

397

nil))))

To establish the validity of certain tactics, such as use and conditional-

eqsubst, we must also ensure that certain newly introduced terms and formulas

are well-formed with respect to the arity table, or are among the current axioms

and theorems. For these tactics, we also have a second notion of step-validity,

tactic.skeleton-step-env-okp.

Definition: tactic.skeleton-step-env-okp
(pequal*
(tactic.skeleton-step-env-okp x worlds axioms thms atbl)
(let ((tacname (tactic.skeleton->tacname x)))

(cond ((equal tacname ’conditional-eqsubst)
(tactic.conditional-eqsubst-env-okp x atbl))
((equal tacname ’conditional-eqsubst-all)
(tactic.conditional-eqsubst-all-env-okp x atbl))

. . . and so on . . .
((equal tacname ’use)
(tactic.use-env-okp x axioms thms atbl))
(t
;; other tactics have no such requirements
t))))

Finally, by combining the proofs for each compiler, we arrive at the three

theorems for tactic.compile-skeleton-step. Note that the tactic.skeleton-

step-env-okp is only needed for faithfulness.

ACL2 Code
(defthm logic.appeal-listp-of-tactic.compile-skeleton-step

(implies (and (tactic.skeletonp x)
(tactic.world-listp worlds)
(tactic.skeleton-step-okp x worlds)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

398

(tactic.skeleton->goals x))
(logic.strip-conclusions proofs))))

(equal (logic.appeal-listp
(tactic.compile-skeleton-step x worlds proofs))

t))

(defthm logic.strip-conclusions-of-tactic.compile-skeleton-step
(implies (and (tactic.skeletonp x)

(tactic.world-listp worlds)
(tactic.skeleton-step-okp x worlds)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(tactic.skeleton->goals x))
(logic.strip-conclusions proofs)))

(equal (logic.strip-conclusions
(tactic.compile-skeleton-step x worlds proofs))
(if (tactic.skeleton->tacname x)

(clause.clause-list-formulas
(tactic.skeleton->goals
(tactic.skeleton->history x)))

(clause.clause-list-formulas
(tactic.skeleton->goals x))))))

(defthm logic.proof-listp-of-tactic.compile-skeleton-step
(implies (and (tactic.skeletonp x)

(tactic.world-listp worlds)
(tactic.skeleton-step-okp x worlds)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas

(tactic.skeleton->goals x))
(logic.strip-conclusions proofs))

(tactic.skeleton-step-env-okp x worlds axioms
thms atbl)

(tactic.skeleton-atblp x atbl)
(logic.proof-listp proofs axioms thms atbl)
(tactic.world-list-atblp worlds atbl)
(tactic.world-list-env-okp worlds axioms thms)

399

... various arities are correct ...

... various formulas are thms ...

... various formulas are axioms ...
)

(equal (logic.proof-listp
(tactic.compile-skeleton-step x worlds proofs)
axioms thms atbl)

t)))

Finally, we extend the tactic.skeleton-step-okp and tactic.skeleton-

step-env-okp across the entire skeleton, to ensure that every step in the skeleton is

valid according to one of our tactics.

Definition: tactic.skeleton-okp
(pequal* (tactic.skeleton-okp x worlds)

(if (tactic.skeleton->tacname x)
(and (tactic.skeleton-step-okp x worlds)

(tactic.skeleton-okp (tactic.skeleton->history x)
worlds))

t))

Definition: tactic.skeleton-env-okp
(pequal* (tactic.skeleton-env-okp x worlds axioms thms atbl)

(if (tactic.skeleton->tacname x)
(and (tactic.skeleton-step-env-okp x worlds axioms thms

atbl)
(tactic.skeleton-env-okp
(tactic.skeleton->history x)
worlds axioms thms atbl))

t))

An easy proof by induction then establishes that any valid skeleton can be

compiled to produce a proof of its original goals. We think of this result as the

fidelity of Milawa.

400

Part IV

Self-Verification

401

Chapter 11

User Interface

With our theorem prover implemented and the ACL2 proof of its fidelity com-

pleted, our attention now turns to using Milawa to (1) rediscover the fidelity proof,

and (2) emit this proof in a format that logic.proofp can check. An important

tool for carrying out this work is a user interface for interacting with Milawa. Our

interface provides three main features.

– Proof management. The interface provides an environment for applying tactics,

controlling theories, and otherwise carrying out proofs using Milawa. It also

includes features for debugging proofs, and for rebuilding proofs on multiple

machines, in parallel.

– ACL2 connection. The interface allows us to read in definitions and theorems

from our ACL2 proof sketch. This allows us to avoid duplicating each definition

and goal formula, and helps to keep the Milawa proof in sync with the ACL2

sketch.

– Proof-checking support. The interface can save fully expansive versions of the

proofs it has found, and can also write command files for our proof checker to

process.

Our interface is implemented as a collection of ACL2 macros which issue table

and make-event commands. ACL2 tables act like global variables, and make-event

allows us to inspect the values of these variables and also other parts of the ACL2

402

state, such as the definitions and theorems that have been accepted by the ACL2

system.

Programming in this style was quite awkward at first, but the resulting inter-

face seems to be reasonable. Without any effort on our part, every Milawa command

can be undone. We can also use ACL2’s notion of local events to limit the scope of

commands that manipulate theories and change other parameters.

11.1 Proof Management

A good part of our interface has nothing to do with ACL2, but only provides

an environment for applying tactics and carrying out Milawa proofs. This part of

our interface is somewhat similar to the Subgoal package in Cambridge LCF [72] or

HOL [33], and as such it is not much like ACL2’s usual interface. However, recent

versions of ACL2 include a new feature called gag-mode, which is somewhat closer

to this style of interface.

At any point during a proof attempt, the user is shown a (possibly truncated)

list of the currently outstanding goals. He inspects these goals and then chooses to

apply some tactic. He is then shown a list of the new goals which result from the

application of that tactic. This process continues until all the goals are proven.

As an example, given two association lists, x and y, (submapp x y) deter-

mines whether every key in x is bound to the same value in y as it is in x. Below,

we annotate a transcript for the Milawa proof which shows this function is transitive.

Note that we have made some minor formatting changes so the transcript will fit into

the margins.

We begin with the initial goal. This goal, and all of the other goals shown

below, are clauses, but our interface displays them as more familiar ACL2-style im-

403

plications.

One goal remains.

1. (IMPLIES (AND (SUBMAPP X Y) (SUBMAPP Y Z))
(EQUAL (SUBMAPP X Z) ’T))

At this point, we instruct the system to apply the use tactic to add an instance

of a previously proven theorem to the goal. Below, MILAWA !> is a prompt which is

printed by ACL2 when it is ready for input. The user’s input is shown in bold. All of

the Milawa user-interface commands are prefixed with the % character. The interface

responds to the command by printing the new goal which is generated by applying

the tactic.

MILAWA !>(%use (%instance (%thm submapp-badguy-membership-property)
(x x)
(y z)))

One goal remains.

1. (IMPLIES
(AND
(IF
(EQUAL
(EQUAL
(IMPLIES
(SUBMAPP-BADGUY X Z)
(IF (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(NOT (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)
(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z)))

’NIL))
’T)
’NIL)

’NIL
’T)
(SUBMAPP X Y)
(SUBMAPP Y Z))

(EQUAL (SUBMAPP X Z) ’T))

404

We now instruct the system to apply the waterfall tactic to simplify this goal

by case-splitting and rewriting. Our interface expects to be told which theory to

use, and we tell it to use the default theory. We ask it to run the waterfall for at

most 40 steps, which is far more than necessary. Because the waterfall tactic is often

expensive, the interface prints some performance notes before printing the reduced

goal.

MILAWA !>(%waterfall default 40)
;; Waterfall: clause #1 took 1.400088 seconds, producing 1 subgoals
(RW.WATERFALL-LIST-WRAPPER ...) took 1,414,173 microseconds

(1.414173 seconds) to run with 8 available CPU cores.
During that period,
1,368,086 microseconds (1.368086 seconds) were spent in user mode
32,002 microseconds (0.032002 seconds) were spent in system mode
23,284,864 bytes of memory allocated.
5,718 minor page faults, 1 major page faults, 0 swaps.

; Applied waterfall to 1 clauses; 1 remain
One goal remains.

1. (IMPLIES
(AND (NOT (SUBMAPP X Z))

(SUBMAPP Y Z)
(SUBMAPP X Y)
(NOT (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))))
(NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)))

We now make a change to the default theory, removing one of its rules which

we are about to use. This trick is common in ACL2 proofs. If we explicitly use an

instance of an enabled rule, then the rule itself may counterproductively rewrite the

instance to t, leaving us where we started. Disabling the rule before using it is a

simple way to prevent this.

MILAWA !>(%disable default equal-of-lookups-when-submapp)
Removing 1 rules from DEFAULT.

405

We now use some instances of the rule. After each application of the use tactic,

the interface prints the new goals which are generated.

MILAWA !>(%use (%instance (%thm equal-of-lookups-when-submapp)
(a (cdr (submapp-badguy x z)))
(x x)
(y y)))

One goal remains.

1. (IMPLIES
(AND
(IF
(IF (EQUAL (NOT (SUBMAPP X Y)) ’NIL) ’NIL ’T)
’T
(IF (IF (EQUAL (NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X))

’NIL)
’NIL
’T)

’T
(IF (EQUAL (EQUAL (EQUAL

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)
(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y))

’T)
’NIL)

’NIL
’T)))

(NOT (SUBMAPP X Z))
(SUBMAPP Y Z)
(SUBMAPP X Y)
(NOT (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))))
(NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)))

MILAWA !>(%use (%instance (%thm equal-of-lookups-when-submapp)
(a (cdr (submapp-badguy x z)))
(x y)
(y z)))

One goal remains.

406

1. (IMPLIES
(AND
(IF
(IF (EQUAL (NOT (SUBMAPP Y Z)) ’NIL) ’NIL ’T)
’T
(IF (IF (EQUAL (NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y))

’NIL)
’NIL
’T)

’T
(IF (EQUAL (EQUAL (EQUAL

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y)
(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))

’T)
’NIL)

’NIL
’T)))

(IF
(IF (EQUAL (NOT (SUBMAPP X Y)) ’NIL) ’NIL ’T)
’T
(IF (IF (EQUAL (NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X))

’NIL)
’NIL
’T)

’T
(IF (EQUAL (EQUAL (EQUAL

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)
(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y))

’T)
’NIL)

’NIL
’T)))

(NOT (SUBMAPP X Z))
(SUBMAPP Y Z)
(SUBMAPP X Y)
(NOT (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))))
(NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)))

407

At this point, we might call upon the waterfall to finish the proof, but instead,

for exposition, we will use the split tactic to clean up the messy if-expressions and

show a split into two subgoals.

MILAWA !>(%split)
; Splitting clause 1.
Two goals remain.
1. (IMPLIES

(AND (NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y))
(EQUAL (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y))
’T)

(NOT (SUBMAPP X Z))
(SUBMAPP Y Z)
(SUBMAPP X Y)
(NOT (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))))
(NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)))

2. (IMPLIES
(AND (EQUAL (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))
’T)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y)
(EQUAL (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Y))
’T)

(NOT (SUBMAPP X Z))
(SUBMAPP Y Z)
(SUBMAPP X Y)
(NOT (EQUAL (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)

(LOOKUP (CDR (SUBMAPP-BADGUY X Z)) Z))))
(NOT (LOOKUP (CDR (SUBMAPP-BADGUY X Z)) X)))

The proof may now be easily finished by rewriting. We could do this using

the waterfall, but to show a different tactic we instead use the rewriter. We do this

via the %crewrite command, which we give the name of the theory to use.

408

MILAWA !>(%crewrite default)
; Rewrote clause #2 in 0.00 seconds (proved), 0.00% assm 0.00% rw
; Rewrote clause #1 in 0.71 seconds (proved), 0.00% assm 100.00% rw
(RW.CREWRITE-CLAUSE-LIST ...) took 721,220 microseconds

(0.721220 seconds) to run with 8 available CPU cores.
During that period,

708,045 microseconds (0.708045 seconds) were spent in user mode
12,000 microseconds (0.012000 seconds) were spent in system mode
12,064,560 bytes of memory allocated.
2,947 minor page faults, 0 major page faults, 0 swaps.

; Rewrote 2 clauses; 0 remain (0 forced)
All goals have been proven.

Some amount of work is necessary to support the features shown in the above

transcript. For instance, global variables (in the form of ACL2 tables) are used to

store default parameters for tactics such as split-all, and a world structure for the

rewriting tactics. To manage the proof itself, another variable stores the evolving

proof skeleton. Commands like %use are implemented as macros which apply the

desired tactic to this skeleton.

11.2 ACL2 Connection

The above discussion has not covered how we arrived at the initial goal, nor

what we do after the proof has been completed.

Using the make-event facility of ACL2, we can inspect the ACL2 state, which

includes the lemmas and definitions which have been accepted by ACL2. We take

advantage of this capability to avoid duplicating the definitions and lemmas in our

Milawa proof scripts.

For function definitions, we provide a user-interface command called %auto-

admit. When the user types (%autoadmit fn), where fn is the name of an ACL2

409

function, we look up the ACL2 definition of fn and also the measure which was used

to admit fn. If fn is recursive, we compute its termination obligations and put them

into the skeleton for the user to prove. After the user has completed the proofs, we

can add the definition of fn to a table that records the definitions that have been

accepted by Milawa.

In certain cases, the ACL2 definition of a function does not precisely match

its Milawa definition. One example of this is in the function <<. In ACL2, there are

additional data types (such as characters and strings) which are not found in Milawa,

and there is no closed universe axiom. Because of this, certain theorems of Milawa,

such as the transitivity and trichotomy rules for <<, would not hold for all ACL2

objects. To address this difference, our ACL2 definition of << includes a special case

for non-Milawa objects.

To prevent such a difference from causing problems for %autoadmit, we allow

our ACL2 definitions to be annotated with an alternate form for use in Milawa, via

a new “xarg” called :export. The ACL2 definition of << is shown below.

ACL2 Code
(defun << (x y)

(declare (xargs :guard t
:export
;; Definition for Milawa.
(cond ((natp x)

(if (natp y) (< x y) t))
((natp y)
nil)
((symbolp x)
(if (symbolp y) (symbol-< x y) t))
((symbolp y)
nil)
(t
(if (equal (car x) (car y))

410

(<< (cdr x) (cdr y))
(<< (car x) (car y)))))))

;; Definition for ACL2.
(cond ((natp x)

(if (natp y) (< x y) t))
((natp y)
nil)
((symbolp x)
(if (symbolp y) (symbol-< x y) t))
((symbolp y)
nil)
;; Special case for ACL2 compatibility
((or (not (consp x))

(not (consp y)))
(if (consp x)

nil
(if (consp y)

t
;; ACL2’s usual total order
(and (ACL2::lexorder x y)

(not (equal x y))))))
(t
(if (equal (car x) (car y))

(<< (cdr x) (cdr y))
(<< (car x) (car y))))))

ACL2 also includes a variety of functions which cause side-effects that are in-

visible from a logical perspective. For instance, the ACL2 function fmt-to-comment-

window may be used to print a message to standard output, but an ACL2 axiom is

that (fmt-to-comment-window ...) is equal to nil. Other notable side-effecting

functions include time$, which may be used to report timing information, ec-call,

which can be used to suppress ACL2’s guard-verification mechanism, er, which can

be used to generate run-time errors, and prog2$, which is used purely to cause side-

effects, e.g., via fmt-to-comment-window or er.

411

We sometimes make use of these functions, particularly fmt-to-comment-

window and time$, to provide commentary about how many goals remain or how long

various operations are taking to execute. We also use them to print warnings when,

e.g., the stack depth is exhausted in our evaluator, or when the rlimit is exhausted

during rewriting. These side-effecting functions are eliminated by %autoadmit, and

are not part of our Milawa definitions.

To load ACL2 theorems, we implement a command called %autoprove. When

the user types (%autoprove thm), where thm is the name of an ACL2 theorem, we

look up the formula associated with the theorem, and load it into the skeleton as a

goal for the user to prove. Once the user has completed the proof, we can create a

Milawa rewrite rule from the theorem, and add it to our theory.

There are many subtleties to importing theorems from ACL2. First, there

are a few simple matters of syntax. ACL2 embeds forcing annotations and syntactic

restrictions directly into the formula, whereas we use annotations on our hypothesis

structures. ACL2 stores the backchain limits for its hypotheses in a separate list, while

we store them in each hypothesis structure. Finally, ACL2 prevents loops in rules such

as the commutativity of + by annotating its rules with a separate :loop-stopper

field, whereas we handle this using syntactic restrictions involving logic.term-<. It

is not difficult to write the appropriate transformations to deal with these differences.

All rewrite rules in ACL2 are inside-out, but Milawa also supports outside-in

rewriting. So, when %autoprove is used to import a rule from ACL2, we examine

the rule to see if it would make a good outside-in rule. Inside-out rules are created

in all cases, but we also create an outside-in rule when the right-hand side never in-

creases the duplicity of a variable, there are no hypotheses, and there are no syntactic

restrictions.

What motivates these criteria? The main advantage of outside-in rewriting

412

is that we can sometimes avoid rewriting subterms. For instance, we can rewrite

(car (cons x y)) to x without ever examining y. On the other hand, a rule which

duplicates a variable could lead us to examine a large term twice. For hypotheses,

we do not want to examine unsimplified terms repeatedly during backchaining. For

syntactic restrictions, our main motivation is for the user to be able to assume that

the terms they are examining with syntactic restrictions have already been simplified.

For instance, if we rewrite x to x′ and y to y′, we may often find that x′ and y′ are

not in the same term order as x and y.

At any point in an ACL2 session, there is an implicit, default theory. Each

rewrite rule (and definition) is either “enabled” (part of the theory) or “disabled” (not

part of the theory), and the rewriter is only allowed to use enabled rules. Our user

interface manages a similar theory named default. When definitions and rules are

added with %autoadmit and %autoprove, we add them to the default theory only

when they are enabled in ACL2. We adopt the good practice of avoiding non-local

theory changes in our ACL2 proof scripts, and similarly we avoid non-local theory

changes to the default theory in our Milawa proofs. Together, this discipline keeps

our default theory in sync with ACL2’s theory automatically.

The use of %autoadmit and %autoprove means that definitions and theorems

in our Milawa proofs are automatically updated as we make changes to their ACL2

counterparts. But we might also add a theorem to our ACL2 proof script and forget

to add the corresponding theorem to Milawa. Matt Kaufmann was able to develop

a tool, now distributed with ACL2 as misc/book-thms, which produces the names

of all the theorems introduced in an ACL2 book, even when they are generated by

macros or make-event commands. We use this tool to ensure our Milawa files are

complete with respect to the ACL2 files they are reimplementing.

An interesting consequence of writing our user interface within ACL2 is that

413

when we get stuck in a Milawa proof, we can ask ACL2 to prove the same goal to

see whether it is successful and what it tries to do. This was frequently useful when

we were having difficulty translating a proof, especially to ensure no inappropriate

forcing had led us to goals that ACL2 could not see how to prove. Our interface

automates this process with the (%check) command, which asks ACL2 to prove each

outstanding goal and displays ACL2’s attempt to the user.

11.3 Proof-Checking Support

The tables used by our interface uses to store proof skeletons, rules, definitions,

etc., are not protected by ACL2 in any way, so the user may freely and unsafely

redefine functions, add rules, and so on. We make no claims that the interface obeys

the rules of our logic, and one should only trust the proofs it finds after they have

been checked by the system developed in Chapter 4.

To facilitate this checking, our interface can be used to build fully expansive

versions of the proofs it finds by simply compiling the skeletons obtained at the

completion of each proof attempt. These full proofs can be saved into files using the

compacting printer introduced by Boyer and Hunt [16], which writes objects using

the #1=...-style abbreviations supported by our file reader. The use of abbreviations

helps to reduce disk space needs, and also reduces the amount of memory needed by

the proof checker to read the proof.

In addition to saving proofs for later checking, our interface can run logic.-

proofp directly on proofs as they are constructed. To support this, we “emulate”

the behavior of the proof checker by keeping a list of axioms, a list of theorems, and

an arity table as global variables and by extending these lists as new definitions and

theorems are processed. We normally do not use check proofs as we build them since

doing so adds a significant amount of time to our Milawa scripts, but the ability to do

414

so is sometimes useful as a sanity check after making changes to our interface code.

Our interface also keeps track of the Milawa definitions and theorems that

have been submitted. This history can be conveniently written into a file of DEFINE,

VERIFY, SKOLEM, and FINISH commands for the core proof checker to process.

11.4 Rewriter Debugging

Our user interface also includes two important debugging features. The first

of these is a mechanism for profiling the operation of the rewriter, and is styled after

ACL2’s accumulated-persistence feature.

We implement our profiler by using the advise feature of Clozure Common

Lisp, which allows us to add functionality around crw without needing to explicitly

redefine it. Similar functionality is available in many other Lisp systems, but is not

part of the Common Lisp standard. The goal is to associate, with each rule we

backchain through,

– frames, the number of stack frames generated because of this rule,

– tries, the number of times the rule was explicitly tried, and

– successes, the number of times the rule was applied successfully.

A naive implementation of profiling would be as follows: each time a rule is tried,

increment the frames for every active rule in the call stack, and increment the tries

for this particular rule; then, if the rule applies, increment its successes.

To make this more efficient, we use two data structures. First, we have a stored

costs table, which is a hash table mapping rule names to tuples of the three counts.

Next, we have an active rules stack, which is a list of the form

[(frames1 . name1), . . . , (framesn . namen)],

415

The idea is that each framesi is some number of frames which namei should be blamed

for, but which have not yet been added to the stored costs table. As the rewriter

operates, we update these structures as follows. Every time we begin working to apply

a new rule, name, we push (1 . name) onto the active rule stack. Now, suppose we

are about to return from the rule mode of crw, and that our active rules stack is

[(frames1 . name1), . . . , (framesn . namen)]. Here,

– we increment the tries associated with name1 in the stored costs table, to record

this attempt to use name1 ,

– we increment the frames associated with name1 in the stored costs table by

frames1,

– if n ≥ 2, we increment frames2 by frames1, so that later, when its frame is

popped, name2 will also be blamed for the frames we have just assigned to

name1, and

– we pop (frames1 . name1) from the active rules stack.

This approach allows us to avoid traversing the list of active rules to count the frames

for each rule, considerably reducing the overhead of profiling.

The profiler may be enabled and disabled using the commands (%profile)

and (%profile.stop). After profiling has been enabled, the rewriter is used as

normal, e.g., the user might run (%crewrite ...) or (%waterfall ...), or may

even run whole files of proofs. Finally, to see the results of profiling, the user writes

(%profile.report). These results are cumulative until (%profile.clear) is run

or profiling is stopped, so incremental reports can be viewed during interrupts.

An example of a profiling report, generated for our proof of the theorem nth-

of-first-index-of-domain-and-range, is shown below. (We have compressed the

416

report so it will fit within the margins.) When reading these reports, one is typi-

cally looking for rules which are rarely or never successful but which are responsible

for a high number of frames. These rules are slowing down the rewriter without

contributing to any progress.

MILAWA !>(%profile.report)
The following statistics were gathered since the last (%profile) or
(%profile.clear) was issued.

Rewrite Rule Report

Cache hit rate: 22% (1,199 hits in 5,216 tries)

In the following table,
- "Success" counts how many times all the hyps were relieved.
- "Frames" counts how many rules were tried due to this rule

backchaining.
- "Tries" counts how many times this rule itself was tried.
- "Ratio" is the average number of frames per try.
- A star indicates this rule can cause case splits.

Success Tries Frames Ratio Rule

1 57 795 13.94 NTH-WHEN-ZP
0 98 589 6.1 NOT-EQUAL-WHEN-LESS
0 98 552 5.63 NOT-EQUAL-WHEN-LESS-TWO
0 98 547 5.58 SAME-LENGTH-PREFIXES-EQUAL-CHEAP
0 54 487 9.1 CONSP-OF-CDR-WHEN-LEN-TWO-CHEAP
0 57 432 7.57 NTH-WHEN-INDEX-TOO-LARGE
0 52 411 7.90 TRICHOTOMY-OF-<
. . . and so on . . .
1 1 1 1.0 REFLEXIVITY-OF-EQUAL
1 1 1 1.0 CONS-UNDER-IFF
1 1 1 1.0 IFF-OF-T-LEFT
1 1 1 1.0 [OUTSIDE]EQUAL-OF-ZERO-AND-NFIX

Useless, Expensive Rules

The following rules were never successful and each took over 100
frames. To speed up your rewriting, you may wish to consider
disabling them:

(NOT-EQUAL-WHEN-LESS NOT-EQUAL-WHEN-LESS-TWO
SAME-LENGTH-PREFIXES-EQUAL-CHEAP

417

CONSP-OF-CDR-WHEN-LEN-TWO-CHEAP
. . . and so on . . .
CONSP-OF-CDR-WHEN-TUPLEP-3-CHEAP
CONSP-OF-CDR-WHEN-TUPLEP-2-CHEAP).

Another useful tool is a rewrite-loop debugger, similar to the :cw-gstack com-

mand in ACL2, which we implement in our interface by redefining functions. The

rewriter is modified so that when the rewrite limit is reached, a warning is printed and

a global variable, *rw.rlimit-was-reached*, is set to t. Our rule-trace constructor

is then modified so that whenever this flag is t, as a side-effect it prints the name

of the rule it is using and the result of applying the rule. Finally, in the rewriter,

as the backchaining unwinds, we set *rw.rlimit-was-reached* back to nil when

the rlimit reaches 5. The net effect is that rules used “near the rlimit” are printed.

Usually these are the rules responsible for the loop.

All of this happens automatically, and the user only needs to intervene if he

interrupts the rewriter before the *rw.rlimit-was-reached* flag is set back to nil.

To show the loop-debugger in use, it is easy to set up rules which loop with one

another.

Rule:
(equal (app (app x y) z)

(app x (app y z)))

Rule:
(equal (app x (app y z))

(app (app x y) z))

If these rules are both part of the theory, then goals involving multiple app

terms will cause loops. To see the loop debugger work, we set up the following goal.

When we rewrite it, the problematic rules become obvious. In this case, the loop does

418

not prevent us from proving the goal, but even so, such loops may dramatically slow

the rewriter.

One goal remains.

1. (EQUAL (APP A (APP B (APP C D)))
(APP A (APP (APP B C) D)))

MILAWA !>(%crewrite default)
WARNING: rlimit exhausted – the rewriter may be looping!
Be sure to run (rw.stop-loop-debugging) if you interrupt!
APP-OF-APP-ALT: (APP (APP A (APP B C)) D)
[OUTSIDE]APP-OF-APP: (APP A (APP (APP B C) D))
[OUTSIDE]APP-OF-APP: (APP B (APP C D))
APP-OF-APP-ALT: (APP (APP B C) D)
[OUTSIDE]APP-OF-APP: (APP B (APP C D))
APP-OF-APP-ALT: (APP (APP B C) D)
[OUTSIDE]APP-OF-APP: (APP B (APP C D))
APP-OF-APP-ALT: (APP (APP B C) D)
[OUTSIDE]APP-OF-APP: (APP B (APP C D))
APP-OF-APP-ALT: (APP (APP B C) D)
[OUTSIDE]APP-OF-APP: (APP B (APP C D))
APP-OF-APP-ALT: (APP (APP B C) D)
[OUTSIDE]APP-OF-APP: (APP B (APP C D))
. . . and so on . . .
; Rewrote clause #1 in 0.46 seconds (proved), 0.00% assm 100.00% rw
(RW.CREWRITE-CLAUSE-LIST ...) took 473,028 microseconds

(0.473028 seconds) to run with 8 available CPU cores.
During that period,

444,028 microseconds (0.444028 seconds) were spent in user mode
20,002 microseconds (0.020002 seconds) were spent in system mode
7,513,792 bytes of memory allocated.
4,312 minor page faults, 0 major page faults, 0 swaps.

; Rewrote 1 clauses; 0 remain (0 forced)
All goals have been proven.

419

11.5 Parallelism

Although there is experimental support for some parallelism in ACL2 [73],

these features cannot be combined with the hash-consing extension [16] which we

use for our proof printing and rewriter caching. As a result, our user interface is a

single-threaded program which cannot take advantage of multiple processors when

searching for a proof.

Despite this, we can still achieve parallelism when rebuilding our proofs by

splitting up our work into many files, and invoking separate instances of our user

interface to process each file. In ACL2, such files are called books, and the act of

processing a book is called certification. Our files of interface instructions are also valid

ACL2 books, and can be processed with ACL2’s normal certification mechanisms.

But ACL2’s approach to certification imposes significant limits on parallelism,

because books must be certified in the order of their dependencies. To avoid this

limitation, we have developed an alternate approach, called “provisional certification,”

which allows our books to be processed in any order. When a book that has not yet

been certified is included, we simply add its definitions and theorems without checking

their proofs.

Our build system takes advantage of this, splitting up the work of rebuilding

our proofs across eight machines, each of which has eight processors. The ability

to rebuild proofs more quickly has been quite valuable, particularly when we made

updates to our ACL2 scripts.

420

Chapter 12

Bootstrapping

With our tactics written and our user-interface in place, we are ready to begin

the work of translating ACL2 proofs into Milawa proofs. This process is made more

difficult by our desire to emit proofs that can be checked in a reasonable amount of

time by the core proof checker.

What is reasonable? Until we started generating proofs, we had no intuition

for how large the translated proofs would be or how long they would take to check.

Our proof checker, logic.proofp, is implemented quite simply and has a number of

obvious inefficiencies. For instance, to check axiom and theorem steps, we perform a

linear search of the current *axioms* and *theorems* for the formula being used.

Arity checking is also particularly expensive, and requires a linear search through an

association list for every function named throughout a term or formula.

On the other hand, there are also some good aspects of the proof checker’s

performance. Excessive consing is often a cause of slowness in Lisp programs, but

most of our proof-step checking functions do little consing. Another important note

is that, in practice, all of the proofs we will check are written to disk using Boyer

and Hunt’s compacting printer [16], which uses #1=...-style abbreviations to refer to

structures which are repeated many times, such as formulas. This has some obvious

benefits for disk space, memory usage, and memory locality, but it also means that

many equality checks, such as those used to compare parts of formulas, may be settled

by pointer comparison rather than by a deep, structural equality check.

421

As a simple way to measure the size of the proofs being generated, we began

to use the rank function to count the number of conses. We adopt the ordinary SI

prefixes, so a kilocons (KC) means a thousand conses, a megacons (MC) means a

million conses, and a gigacons (GC) means a billion conses.

During our proof development, the computer we have mainly used is named

Lhug-3. This computer has four 2.2 GHz AMD Opteron 850 processors, 32 GB of

memory, and runs 64-bit Linux. We typically use Clozure Common Lisp (CCL).

Early in the project, as a rule of thumb we estimated that checking a gigacons worth

of proof steps on this machine would take about forty minutes. Since that time, we

have made some efficiency improvements to avoid some unnecessary arity checking,

and CCL has presumably improved. Today, a revised estimate is that logic.proofp

can check about a gigacons of proof every 7 minutes on the same machine.

At any rate, we set a rather arbitrary goal that no individual proof should be

larger than 500 megaconses. Toward this goal, we implemented a proof-size check

in our user interface so that, upon building each proof, a size-check is performed. If

the proof is larger than our threshold of 500 megaconses, an error is caused. In such

cases, the user can either attempt to make the proof smaller (e.g., by using a different

proof strategy, by improving the efficiency of the proof-building functions being used,

or by introducing intermediate proof checkers that can check smaller proofs), or can

choose to accept the large proof by increasing the threshold with a %max-proof-size

command.

12.1 Level 2 – Propositional Rules

As we began to build proofs, we were able to optimize many of our proof-

building functions to emit smaller proofs. Many aspects of this can be seen throughout

the previous chapters. For instance, we favor “custom” derivations for propositional

422

manipulations rather than using our tautology rule, even optimizing the generic subset

rule for special, common cases; we introduce and instantiate formal theorems to

reduce the number of steps needed in derivations, as first described in Section 6.1;

we develop the update clause and cs-aux routines in tail-recursive style so that the

proof grows only linearly in the size of the clause; and we keep the hypotheses for our

assumptions structure partitioned so that we may perform only minimal propositional

manipulation while rewriting clauses.

Even so, as we began translating more difficult proofs, it became apparent that

fully expansive proofs for our more sophisticated algorithms would not be practical.

Instead, we set upon the goal of verifying a series of increasingly powerful proof

checkers, which could accept smaller proofs. Although the proof checking program

we developed in Chapter 4 initially requires us to prove each new theorem we introduce

using logic.proofp, it also allows us to begin using a new proof checker, via the

SWITCH command, after we have shown the fidelity of the new proof checker.

The first of our new proof checkers is named level2.proofp. What kinds

of proofs should level2.proofp accept? As a modest goal, we decided to try to

implement all of the rules accepted by logic.proofp, and also all of the simple, non-

recursive propositional rules which were introduced in Section 5.3, such as modus

ponens and disjoined associativity. Later, to make level2.proofp slightly more

capable, we decided to also add a few more rules of this variety, such as the aux

split twiddle and aux split twiddle 2 rules. The hope was that these rules would be

simple enough that a fully expansive proof of the fidelity of level2.proofp would

be practical.

How is level2.proofp defined? In Section 3.5, we introduced step-checking

functions for the basic rules of inference that are accepted by logic.proofp. Our

first step is to write similar functions for the new kinds of proof steps we wish to

423

support.

We begin with the commute or rule, which allows us to derive B ∨ A when

given a proof of A∨B. The function build.commute-or-okp determines if an appeal

is a valid use of this rule of inference. To be valid, we say the appeal’s method must

be build.commute-or (named after the proof-building function for the commute or

rule), it may have no extras, and it must have precisely one subproof with a conclusion

of the appropriate form. Following our previous convention for arity checking, we

assume the subproofs are well-formed with respect to the arity table, so in this case

no additional arity checking is needed.

Definition: build.commute-or-okp
(pequal* (build.commute-or-okp x)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’build.commute-or)
(equal extras nil)
(equal (len subproofs) 1)
(let ((subconc (logic.conclusion (car subproofs))))
(and (equal (logic.fmtype conclusion) ’por*)

(equal (logic.fmtype subconc) ’por*)
(equal (logic.vlhs conclusion)

(logic.vrhs subconc))
(equal (logic.vrhs conclusion)

(logic.vlhs subconc)))))))

As another example, the right expansion rule allows us to derive A ∨B when

given a proof of A. The function build.right-expansion-okp determines if an

appeal is a valid use of this rule of inference: the method must be build.right-

expansion, there should be no extras, and there should be a subproof whose con-

424

clusion is appropriate. Since the B portion of the formula is new, we must check to

ensure that it is well-formed with respect to the arity table.

Definition: build.right-expansion-okp
(pequal*
(build.right-expansion-okp x atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’build.right-expansion)
(equal extras nil)
(equal (len subproofs) 1)
(equal (logic.fmtype conclusion) ’por*)
(equal (logic.vlhs conclusion)

(logic.conclusion (car subproofs)))
(logic.formula-atblp (logic.vrhs conclusion) atbl))))

This continues through the other rules. As one more example, the disjoined

associativity rule allows us to conclude P ∨ (A ∨ (B ∨ C)) when given a proof of

P ∨ ((A∨B)∨C). Here, checking whether the conclusions line up appropriately be-

comes somewhat elaborate. As a programming aide, we generate these step-checking

functions using an ACL2 macro which allows us to describe the formulas involved

using a simple pattern-matching style.

Definition: build.disjoined-associativity-okp
(pequal*
(build.disjoined-associativity-okp x)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
(and
(equal method ’build.disjoined-associativity)

425

(equal extras nil)
(equal (len subproofs) 1)
(let ((subconc (logic.conclusion (car subproofs))))
(and
(equal (logic.fmtype conclusion) ’por*)
(equal (logic.fmtype (logic.vrhs conclusion)) ’por*)
(equal (logic.fmtype (logic.vlhs (logic.vrhs conclusion)))

’por*)

(equal (logic.fmtype subconc) ’por*)
(equal (logic.fmtype (logic.vrhs subconc)) ’por*)
(equal (logic.fmtype (logic.vrhs (logic.vrhs subconc)))

’por*)

(equal (logic.vlhs conclusion) (logic.vlhs subconc))
(equal (logic.vlhs (logic.vlhs (logic.vrhs conclusion)))

(logic.vlhs (logic.vrhs subconc)))
(equal (logic.vrhs (logic.vlhs (logic.vrhs conclusion)))

(logic.vlhs (logic.vrhs (logic.vrhs subconc))))
(equal (logic.vrhs (logic.vrhs conclusion))

(logic.vrhs (logic.vrhs (logic.vrhs subconc))))
)))))

These new functions are similar in complexity and execution time to our prim-

itive proof checking functions for steps like Cut and Associativity. But a single dis-

joined associativity step for level2.proofp can do the work of 126 primitive steps

for logic.proofp. The savings for the other propositional rules are more modest,

but are realized every time one of these steps is used. As a result, proofs written for

level2.proofp can be much shorter than proofs for logic.proofp. (Some compar-

isons are presented in Section 12.11.)

After we have introduced a checking function for each new kind of proof step,

we implement a new analogue of logic.appeal-step-okp which can accept any

Level 2 proof step. Note that after checking for each new kind of step, we fall back

426

to logic.appeal-step-okp, so any primitive step is also accepted as a Level 2 step.

Throughout our progression of proof checkers, each new level is “purely additive” and

will accept proof steps from any of the previous levels.

Definition: level2.step-okp
(pequal* (level2.step-okp x axioms thms atbl)

(let ((method (logic.method x)))
(cond ((equal method ’build.commute-or)

(build.commute-or-okp x))
((equal method ’build.right-expansion)
(build.right-expansion-okp x atbl))
((equal method ’build.modus-ponens)
(build.modus-ponens-okp x))
((equal method ’build.modus-ponens-2)
(build.modus-ponens-2-okp x))
((equal method ’build.right-associativity)
(build.right-associativity-okp x))

. . . and so on . . .
(t
(logic.appeal-step-okp x axioms thms atbl)))))

The definition of level2.proofp follows very closely with logic.proofp,

simply substituting level2.step-okp for logic.appeal-step-okp.

Definition: level2.flag-proofp
(pequal* (level2.flag-proofp flag x axioms thms atbl)

(if (equal flag ’proof)
(and (level2.step-okp x axioms thms atbl)

(level2.flag-proofp ’list (logic.subproofs x)
axioms thms atbl))

(if (consp x)
(and (level2.flag-proofp ’proof (car x) axioms thms

atbl)
(level2.flag-proofp ’list (cdr x) axioms thms

atbl))
t)))

427

Definition: level2.proofp
(pequal* (level2.proofp x axioms thms atbl)

(level2.flag-proofp ’proof x axioms thms atbl))

Before we can use the SWITCH command to begin using level2.proofp in our

proof checking system, we must show that it only accepts provable formulas. The

fidelity claim for level2.proofp is the following formula.

(por* (pequal* (logic.appealp x) nil)
(por* (pequal* (level2.proofp x axioms thms atbl) nil)

(pnot* (pequal* (logic.provablep (logic.conclusion x)
axioms thms atbl)

nil))))

With our previous work in place, this proof is easy. To begin with, for each

individual step-checking function we prove that if (1) the appeal is accepted by this

step checker, and (2) all of the formulas for the subproofs are provable, then the

conclusion of the appeal is also provable. For instance, for build.commute-or-okp,

this lemma is:

ACL2 Code
(defthm fidelity-of-build.commute-or-okp

(implies (and (logic.appealp x)
(build.commute-or-okp x)
(logic.provable-listp (logic.strip-conclusions

(logic.subproofs x))
axioms thms atbl)))

(logic.provablep (logic.conclusion x) axioms thms atbl)))

These lemmas are easy corollaries of the three theorems for each builder func-

tion. That is, since the subproofs are provable, let p be a proof the first subproof.

By the definition of build.commute-or-okp, we can see that p has a conclusion

of the form A ∨ B, while the conclusion of x is B ∨ A. Let q be the result of

428

(build.commute-or p). By the relevance theorem for build.commute-or, we can

see that the conclusion of q is B ∨ A. Meanwhile, by the faithfulness theorem for

build.commute-or, we can see that q is accepted by logic.proofp. Hence, q is a

proof of the conclusion of x, which is what we wanted to show.

We carry out a similar argument for each of our new step checkers, then

compose the results to obtain a fidelity lemma for level2.step-okp:

ACL2 Code
(defthm fidelity-of-level2.step-okp

(implies (and (logic.appealp x)
(level2.step-okp x axioms thms atbl)
(logic.provable-listp (logic.strip-conclusions

(logic.subproofs x))
axioms thms atbl))

(logic.provablep (logic.conclusion x) axioms thms atbl)))

The fidelity of level2.proofp then follows by simple induction. In our ACL2

proof sketch, the theorem is expressed as follows.

ACL2 Code
(defthm logic.provablep-when-level2.proofp

(implies (and (logic.appealp x)
(level2.proofp x axioms thms atbl))

(logic.provablep (logic.conclusion x) axioms thms atbl)))

We regard our translated proof of this theorem to be an important landmark

in our bootstrapping process. Early in the project, we had serious concerns about

whether we could practically emit a fully expansive proof showing the fidelity of a

more powerful proof checker.

How large is the proof? In our ACL2 proof sketch, we have a directory named

utilities which contains definitions and theorems for simple functions about arith-

metic, lists, etc., and another directory named logic which includes our definitions

429

of logical concepts such as terms, formulas, and provability. Many of these defini-

tions and theorems are probably not necessary in order to justify level2.proofp,

but rather than try to determine exactly which lemmas are needed, we carry out

all of the proofs in these directories at the primitive level. We then admit the def-

initions and proofs for the builder functions and step checkers leading up through

level2.proofp. In total, there are 421 definitions and 4,188 theorems. All together,

the proofs come to 18.4 gigaconses, with the largest individual proof at 353.8 mega-

conses. On disk, this comes to 1.7 GB using the compacting printer (without using

an external compression program).

12.2 Level 3 – Basic Functions

With the Level 2 proof checker now verified, we can use the SWITCH command

so that our proof checking program will use level2.proofp to check proofs instead

of logic.proofp.

We would now like to return to our ACL2 proof plan. But now, instead of

writing fully expansive proofs, we would like to retarget our proof-building functions

so that they produce Level 2 proofs. For instance, everywhere we have previously

called upon build.commute-or to construct a two-step, fully expansive proof that

can be accepted by logic.proofp, we would now like to call upon a new func-

tion, say build.commute-or-high, which builds a higher-level, one-step proof that

level2.proofp can accept.

Definition: build.commute-or-high
(pequal* (build.commute-or-high x)

(logic.appeal ’build.commute-or
(logic.por (logic.vrhs (logic.conclusion x))

(logic.vlhs (logic.conclusion x)))
(list x)

430

nil))

In our user interface, a simple way to accomplish this is simply to redefine

build.commute-or as an alias to build.commute-or-high. Then, automatically,

the builder functions for algorithms such as our clause splitter, rewriter, and so

on, will begin to emit Level 2 proofs. From the perspective of ACL2, in which we

have written our interface, this sort of redefinition is inconsistent: after we redefine

build.commute-or, its “logical definition” will no longer agree with its “executable

definition,” and we could exploit this to “prove nil” in ACL2. But at this point in the

project, we have already completed our ACL2 proofs, and the correctness of ACL2 is

no longer of any consequence. At any rate, we are still using Milawa’s algorithms to

find the proofs of these theorems—we are simply using redefinition as a convenient

trick to emit higher-level proofs.

What kinds of proof steps should the Level 3 proof checker accept? The idea

is to add rules that will allow Level 3 proofs to skip many proof steps, and yet which

are not too hard to verify with the Level 2 proof checker.

To help identify such rules, we first wanted to identify which tactics would be

most important to optimize. We instrumented our user interface so that the skeleton

compiler prints messages explaining the incremental cost of compiling each step. For

instance, some representative output is:

All goals have been proven.
Compiling skeleton for LOGIC.FORMULA-LIST-ATBLP-OF-LIST-FIX.
; SPLIT-ALL. Incremental Cost: 174,086. Total cost: 174,086
; CLEANUP. Incremental Cost: 69,844. Total cost: 243,930
; UREWRITE-ALL. Incremental Cost: 397,124. Total cost: 641,054
; CLEANUP. Incremental Cost: 8,184. Total cost: 649,238
; ELIM-ALL. Incremental Cost: 828,960. Total cost: 1,478,198
; SPLIT-ALL. Incremental Cost: 213,780. Total cost: 1,691,978
. . . and so on . . .

431

After examining this output for many proofs, it became clear that the cleanup,

split, and rewriting tactics were the largest contributors to proof size. To decide

which rules to add to Level 3, we outlined the control flow for the builder functions

associated with these tactics. For instance, within rw.compile-trace, the builder

function for our rewriters, we wrote down the following call tree.

- rw.compile-trace
- rw.compile-trace-step

- rw.compile-fail-trace
- build.iff-reflexivity
- build.equal-reflexivity

- rw.compile-transitivity-trace
- build.transitivity-of-iff
- build.transitivity-of-equal
- build.disjoined-transitivity-of-iff
- build.disjoined-transitivity-of-equal

- rw.compile-equiv-by-args-trace
- build.iff-from-equal
- build.disjoined-iff-from-equal
- build.equal-by-args
- build.disjoined-equal-by-args

- rw.compile-lambda-equiv-by-args-trace
- build.iff-from-equal
- build.disjoined-iff-from-equal
- build.lambda-equal-by-args
- build.disjoined-lambda-equal-by-args

. . . and so on . . .

The leaves of these trees became candidates for inclusion in Level 3. In the

end, we implement the recursive propositional rules (e.g., modus ponens list, generic

subset, etc.) and also most of the non-recursive rules about =, equal, if, iff, and

not which are covered in Sections 6.1, 6.2, and 7.3.

Unlike the propositional rules which we added in Level 2, these rules refer

to particular functions like equal which are expected to have certain arities, and

432

make use of axioms and theorems. For instance, to make build.equal-reflexivity

produce smaller fully expansive proofs, we first introduced a theorem to capture the

reflexivity of equal, and this theorem is instantiated by build.equal-reflexivity.

Because of this, proofs constructed by build.equal-reflexivity are only valid in

histories where this theorem has been established. In our ACL2 proof sketch, we can

see this as a hypothesis in the faithfulness theorem:

ACL2 Code
(defthm logic.proofp-of-build.equal-reflexivity

(implies (and (logic.termp a)
(logic.term-atblp a atbl)
(equal (cdr (lookup ’equal atbl)) 2)
(memberp (theorem-reflexivity-of-equal) thms))

(logic.proofp (build.equal-reflexivity a)
axioms thms atbl)))

When it comes time to check high-level build.equal-reflexivity proof

steps, we have some options for addressing this. A simple approach would be to

have build.equal-reflexivity-okp ensure that that (theorem-reflexivity-of-

-equal) is a member of the current theorems every time it is used. But this would

impose a linear search of the theorems during every use of the rule.

A more efficient alternative, which is also easy to implement, is to move the

check into level3.proofp, itself. That is, before the actual steps of the proof are

checked, we can ensure that all of the necessary axioms and theorems are part of

the history. Then, within build.equal-reflexivity-okp, we may simply assume

that the theorem is available. This way, the cost is incurred only once per proof, no

matter how many times the rule is used. Following this approach, we implement our

level3.proofp wrapper as follows:

Definition: level3.proofp
(pequal* (level3.proofp x axioms thms atbl)

433

(and (memberp (axiom-equal-when-diff) axioms)
(memberp (axiom-equal-when-same) axioms)
(memberp (axiom-if-when-not-nil) axioms)
(memberp (axiom-if-when-nil) axioms)
(memberp (axiom-reflexivity) axioms)
(memberp (theorem-commutativity-of-pequal) thms)
(memberp (theorem-substitute-into-not-pequal) thms)
. . . and so on . . .
(memberp (theorem-not-when-not-nil) thms)
(memberp (theorem-iff-when-not-nil) thms)
(equal (cdr (lookup ’not atbl)) 1)
(equal (cdr (lookup ’equal atbl)) 2)
(equal (cdr (lookup ’iff atbl)) 2)
(equal (cdr (lookup ’if atbl)) 3)
(level3.flag-proofp ’proof x axioms thms atbl)))

We call these one-time checks static, and say checking the main part of the

proof is dynamic. Because of these static checks, in addition to having fewer steps to

check than equivalent Level 2 proofs, Level 3 proofs may require considerably fewer

lookups for these highly-used theorems and axioms.

A further optimization would be to eliminate the static theorem checks alto-

gether by showing that each necessary theorem is provable from the axioms. The

main obstacle to doing this is expanding away all of the uses of theorems from each

proof, which could require some large evaluations to prove correct. We have not

pursued this approach since the theorem checks are so inexpensive.

In total, there are 230 definitions and 815 theorems in Level 3. Together, the

proofs come to 8.0 GC, or, when printed to disk, 201.0 MB. The largest individual

proof, the faithfulness of the disjoined transitivity of equal rule, is 614.3 MC, and is

the only proof which exceeds our goal of 500 megaconses.

434

12.3 Level 4 – Miscellaneous Groundwork

In Level 4, we add a hodgepodge of new proof steps, again motivated by

inspecting the call trees for our major tactics. To improve clause updating, we add

the substitute iff into literal rules and the aux update clause lemmas for equal and

iff. To improve clause cleaning, we add the standardize negative and double negative

terms, and the obvious term rule. To improve clause splitting, we add most of the

supporting lemmas for cs-aux, such as aux split positive, aux split negative, etc. To

improve if-lifting, we add the factor and cases lemmas. Finally, to improve rewriting,

we add the = by args rules (for functions), the ccstep lemmas, and the compile formula

rule.

Taken all together, we introduce 168 definitions and 991 theorems. The com-

bined proofs weigh in at 19.1 GC and take 288.1 MB when printed to disk. Eight

proofs exceed our goal threshold of 500 megaconses. The largest proofs are of the

faithfulness of the cs-aux lemmas, and the largest individual proof is 1.2 GC.

12.4 Level 5 – Equivalence Traces, Updating Clauses

In Level 5, most of our improvements are aimed at improving rewriting. Many

of the new rules we add are only small improvements for trace compilation, e.g., we

add the rules used in our step compilers for our If False, If True, If General, and If

Same traces. We also add the dual substitution and lambda = by args rules, which

results in an important improvement for rewriting terms with lambda abbreviations.

Another improvement in Level 5 is the addition of our equivalence trace com-

piler from Section 8.3. We show the step-checking function for equivalence trace

appeals, below. The equivalence trace to check is stored in the extras of the ap-

peal. We ensure that the trace is structurally well-formed with rw.eqtracep, that

435

it is a semantically valid trace (i.e., comprised entirely of legitimate Primary, Sec-

ondary, Direct iff, Negative Iff, Trans1, Trans2, Trans3, and Weakening steps) using

rw.eqtrace-okp, and that its conclusion is correct.

Definition: rw.eqtrace-bldr-okp
(pequal* (rw.eqtrace-bldr-okp x atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’rw.eqtrace-bldr)
(tuplep 2 extras)
(let ((trace (first extras))

(box (second extras)))
(and (rw.hypboxp box)

(rw.hypbox-atblp box atbl)
(rw.eqtracep trace)
(rw.eqtrace-okp trace box)
(equal conclusion

(rw.eqtrace-formula trace box))
(not subproofs))))))

We think of rw.eqtrace-bldr steps as adapters that allow equivalence traces

to be plugged into our appeal system. That is, in all of our previous step-checking

functions, the conclusion is justified mainly by inspecting the validity of some sub-

proofs, which are themselves appeals, with whatever appeal-checking function is ap-

propriate for this level. But in an rw.eqtrace-bldr step, the “core” of the proof is

instead stored in the extras, has a custom format which is not based on appeals, and

is checked with specialized functions.

Aside from rewriting improvements, we also add new proof steps to perform

update clause and update clause iff rules as single proof steps. This improves the

sizes of proofs generated by clause cleaning and if-lifting. We also improve clause

436

splitting by adding the remaining lemmas, aux split negative 1 and aux split negative

2, whose proofs were large enough that we left them out of Level 4.

Together, Level 5 adds 192 definitions and 1,071 theorems, totaling 9.3 GC

(or 185.0 MB on disk). All of the proofs are under our 500 megacons goal.

12.5 Level 6 – Factoring and Splitting

In Level 6, an easy addition is the factor rule, which shortens the proofs created

by if-lifting. But the major accomplishment at this level is the addition of our clause

splitting algorithm, cs-aux.

This was particularly challenging. When we presented cs-aux in Section 7.5,

we explained that the goal at each step is to prove the formula (T1∨ · · · ∨Tn)∨ (D1∨

· · · ∨ Dm), where the Ti are the term formulas for the todo literals, and the Di are

the term formulas for the done literals. But this notation hides the case split which

is necessary to handle situations where one of n or m is 0. A precise description of

our goal at each step is

(cond ((and (consp todo) (consp done))
(logic.por (clause.clause-formula todo)

(clause.clause-formula done)))
((consp todo)
(clause.clause-formula todo))
(t
(clause.clause-formula done))).

This case split is infectious. Each time we make a recursive call of cs-aux to

build a piece of the proof, we must consider the shape of the proof which has been

produced in order to extend it properly. Because of this, our attempts to simply “push

the proof through” were unable to produce a proof under 10 GC. In one particularly

misguided effort, the proof reached 78 GC.

437

In retrospect, the solution was fairly obvious: contain the case split by wrap-

ping it in a function that could be disabled. We introduced a new function, clause.-

aux-split-goal, which produces the formula for the step goal when given the list

of todo and done literals, and restated the theorems for each auxiliary rule in terms

of this new function. This abstraction was quite effective: the ACL2 proof decreased

from 80 seconds to 9 seconds, and our new Milawa proof is now at 759.0 MC.

We only add 55 definitions and 402 theorems at this level. The proofs total

3.3 GC (116.5 MB on disk). Only the faithfulness proof for cs-aux exceeds our 500

MC goal.

12.6 Level 7 – Split Tactics

Level 7 adds a single and powerful rule: the clause.split routine introduced

in Section 10.1, used by our split-first and split-all tactics. This requires

us to also translate the proofs for our if-lifting and clause cleaning routines. We

do not add a new kind of proof step for if-lifting, since we only make use of it

through our splitting tactics. Also, we do not add a proof step for our clause cleaning

routine: its processing of a list of clauses, rather than a single clause, cannot be easily

accommodated by our appeal structures, which can have only a single conclusion.

The new step-checking function for clause.split is shown below.

Definition: clause.split-bldr-okp
(pequal*
(clause.split-bldr-okp x atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’clause.split-bldr)
(tuplep 4 extras)

438

(let ((liftp (first extras))
(liftlimit (second extras))
(splitlimit (third extras))
(clause (fourth extras)))

(and (natp liftlimit)
(natp splitlimit)
(logic.term-listp clause)
(logic.term-list-atblp clause atbl)
(true-listp clause)
(consp clause)
(equal conclusion (clause.clause-formula clause))
(equal (clause.clause-list-formulas

(cdr (clause.split liftp liftlimit splitlimit
clause)))

(logic.strip-conclusions subproofs)))))))

This level adds 83 definitions and 749 theorems, totaling 949.5 MC and taking

44.0 MB on disk. None of the proofs exceed our goal of 500 megaconses.

12.7 Level 8 – Rewrite Traces

In Level 8, we add two rules. The first of these allows a rewrite trace to be used

as a proof. The next allows crw-clause to be used as a single step. Later, when we

build Level 8 proofs using our interface, the crw-clause rule is used to justify uses

of crw during our crewrite-first, crewrite-all, and waterfall tactics, and

the rewrite trace rule is only used for proofs generated by our unconditional rewriter,

urw.

Adding these rules requires a considerable amount of supporting work. In

particular, we need to translate the ACL2 proofs that justify rw.compile-trace

(Section 9.9), which in turn requires us to carry out the proofs for each kind of

rewrite trace. Most of these proofs, for instance those for Failure and Transitivity

439

traces, are quite straightforward. As a notable exception, to justify Evaluation traces

we additionally need to carry out the proofs for our evaluator from Section 6.4.

Our rewrite trace rule is much like the equivalence trace rule in Level 5: the

trace itself is stored in the extras of the appeal, and we check it for validity using op-

timized versions of our various well-formedness checks. (These optimizations greatly

improve the speed of proof-checking for some particularly hard proofs in Level 10,

and we discuss them in Section 12.9.) Our step-checking function is shown below.

Definition: rw.compile-trace-okp
(pequal* (rw.compile-trace-okp x defs thms atbl)

(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’rw.compile-trace)
;; extras is a valid trace
(rw.fast-tracep extras)
(rw.fast-trace-atblp extras atbl)
(rw.trace-okp extras defs)
(rw.trace-env-okp extras defs thms atbl)
;; the trace has the right conclusion
(equal conclusion (rw.trace-formula extras))
;; subproofs established any forced goals
(equal (remove-duplicates

(rw.collect-forced-goals extras))
(logic.strip-conclusions subproofs)))))

The use of defs above requires some special attention. Since rewrite traces

can make use of evaluation, a basic faithfulness requirement is that definitions used

by the evaluator are axioms in the current history. As discussed in Section 10.2, one

way to ensure this would be to store the definitions alongside the trace in the extras

of the appeal, and check them in rw.compile-trace-okp. Since, in practice, the

440

definitions we use throughout the proof are fixed, this would inefficiently lead us to

check the definitions over and over again. To avoid this inefficiency, our approach is

to check the definitions ahead of time, and then pass them in to the step checking

function above.

In the Level 3 proof checker (and levels since then), a similar situation was

encountered: we wanted to ensure, statically, that certain axioms and theorems were

available, so that each use of a rule such as the transitivity of = would not require us

to search the theorems. To accomplish this, the level3.proofp function looks for

the necessary axioms and theorems before calling upon level3.flag-proofp to do

the proof checking. This is easy to implement because only a fixed set of axioms and

theorems are needed by each builder.

But the definitions used during evaluation may change from proof to proof as

new definitions are added. This leads to a practical problem: where can the list of

definitions to check be stored?

We approach this problem by introducing a special adapter appeal. Each

Level 8 proof must begin with a special appeal that stores (1) the definitions that

will be used throughout the proof, and (2) the adapter-free, “core” of the proof, as

extras. Our level8.proofp function performs the static checks of the definitions

before calling upon an auxiliary function to do the dynamic checks on the core of the

proof.

Definition: level8.proofp
(pequal*
(level8.proofp x axioms thms atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

441

(and (equal method ’level8.adapter)
(not subproofs)
(tuplep 2 extras)
(let ((defs (first extras))

(core (second extras)))
(and
;; Static checks as in Levels 3, 4, ...
(memberp (axiom-equal-when-diff) axioms)
(memberp (axiom-equal-when-same) axioms)
. . . and so on . . .
(equal (cdr (lookup ’not atbl)) 1)
(equal (cdr (lookup ’equal atbl)) 2)
(equal (cdr (lookup ’iff atbl)) 2)
(equal (cdr (lookup ’if atbl)) 3)
;; Static checks of the definitions
(definition-listp defs)
(logic.formula-list-atblp defs atbl)
(subsetp defs axioms)
;; Actual proof checking, with defs pre-checked
(logic.appealp core)
(equal conclusion (logic.conclusion core))
(level8.proofp-aux core defs axioms thms atbl))))))

The auxiliary function, level8.proofp-aux, is like previous proof checkers,

but takes the definitions as an extra argument. That is, level8.proofp-aux is a

thin wrapper for the following flag function, in proof mode:

Definition: level8.flag-proofp-aux
(pequal* (level8.flag-proofp-aux flag x defs axioms thms atbl)

(if (equal flag ’proof)
(and (level8.step-okp x defs axioms thms atbl)

(level8.flag-proofp-aux ’list (logic.subproofs x)
defs axioms thms atbl))

(if (consp x)
(and (level8.flag-proofp-aux ’proof (car x)

defs axioms thms atbl)

442

(level8.flag-proofp-aux ’list (cdr x)
defs axioms thms atbl))

t)))

Finally, level8.step-okp is just like the step-checking functions for previous

levels, except that the definitions are also available as an additional argument.

Definition: level8.step-okp
(pequal* (level8.step-okp x defs axioms thms atbl)

(let ((method (logic.method x)))
(cond
((equal method ’rw.ccstep-list-bldr)
(rw.ccstep-list-bldr-okp x defs thms atbl))

((equal method ’rw.compile-trace)
(rw.compile-trace-okp x defs thms atbl))

(t
(level7.step-okp x axioms thms atbl)))))

Different adapters are used in subsequent levels. This approach is quite flex-

ible, and effectively allows us to introduce and statically check any additional struc-

tures we would like to use before checking the core of the proof.

Altogether, we add 184 definitions and 1,059 theorems. The proofs total 6.8

GC and take 114.0 MB on disk. The largest proofs are the faithfulness theorems for

the if-trace compilers and the evaluation builder. In total, four proofs exceed our

500 MC goal, with the largest taking 707.8 MC.

12.8 Level 9 – Unconditional Rewriting

In Level 9, we add a rule which allows us to rewrite a clause in a single step

with our fast, unconditional rewriter. This involves translating the proofs that show

urw produces a valid trace, and showing that fast-urw produces the same result

as urw.

443

Our step-checking function directly calls fast-urw, so no rewrite trace ever

needs to be constructed or checked. For faithfulness, we need to ensure that the

control structure being used by fast-urw is valid with respect to the current history.

This can be an expensive check since the control structure includes all of the function

definitions and rewrite rules that might be used by the rewriter. To avoid checking

the control structures at every rewriting step, we introduced worlds in Section 10.2;

the idea is to statically establish, in the adapter trace for Level 9, that the list of

worlds to be used throughout the proof is valid. That is, all of the terms in the world

should be well-formed with respect to the arity table, all of the definitions should be

axioms, and the formulas for all of the rewrite rules should be theorems.

Since the worlds constructed by our user interface include all of the definitions

and rewrite rules we have introduced, they can be quite large. We initially planned to

carry out the static validity check by walking through each formula in the world and

checking its arities via lookup, checking that the formula for every rule was a theorem

using memberp, and checking that every definition was an axiom using memberp. This

check was unacceptably slow, and resulted in delays of over five minutes before the

dynamic checks began.

To address this, we implemented faster checks. For arity-checking, we first

collect a list of obligations—pairs which associate function names with the number

of arguments provided—for the terms and formulas throughout the worlds. We then

use a simple mergesort to order the obligations and remove duplicates; we sort the

arity table and run a linear ordered-subset check to ensure each obligation is met.

To ensure the validity of each definition, we can similarly gather the definitions, sort

them, sort the axioms, and use our ordered-subset check. And we take the same

approach for rewrite rules. With these improvements, our static checks take about

two seconds at the beginning of each proof.

444

Our step-checking function can assume the worlds it is given are valid, and we

present its definition below. It looks up the world to use, and then calls upon fast-

urw (via rw.fast-world-urewrite-list) to ensure that the rewrite is justified.

Because fast-urw does not force any goals and simply rewrites each literal of the

clause, it always produces exactly one resulting clause, and we expect a proof of the

formula for this clause to be provided as a subproof.

Definition: rw.world-urewrite-list-bldr-okp
(pequal*
(rw.world-urewrite-list-bldr-okp x worlds atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’rw.world-urewrite-list-bldr)
(tuplep 1 subproofs)
(tuplep 4 extras)
(let* ((orig-clause (first extras))

(result-clause (second extras))
(theoryname (third extras))
(windex (fourth extras))
(world (tactic.find-world windex worlds))
(subconc (logic.conclusion (first subproofs))))

(and world
(consp orig-clause)
(consp result-clause)
(logic.term-listp orig-clause)
(logic.term-list-atblp orig-clause atbl)
(equal (rw.fast-world-urewrite-list orig-clause

theoryname world)
result-clause)

(equal (clause.clause-formula result-clause) subconc)
(equal (clause.clause-formula orig-clause)

conclusion))))))

445

Level 9 is relatively large, and introduces 427 definitions and 2,475 theorems.

Many of these proofs are quite trivial, and together the proofs are only 1.5 GC, or

903.4 MB when printed. The largest proof is under 200 MC.

12.9 Level 10 – Conditional Rewriting

In Level 10, we add conditional rewriting, via fast-crw, as a new kind of

proof step. This requires us to translate the ACL2 proofs which establish that crw

produces a valid trace, and that fast-crw produces the same result as crw. In this

effort, we can make use of fairly powerful rules such as the one-step unconditional

rewrites from Level 9, the one-step clause.split rule from Level 7, and can also use

rewrite traces as proofs using the rules from Level 8.

Even so, these are difficult theorems, and and many of our translated proofs

vastly exceed our goal of 500 MC. The worst offender is the main lemma for the fast

rewriter (see Appendix C), which takes over 19 GC.

Why is this proof so large? With so many conjuncts and cases, the hypboxes

used throughout each rewrite trace become quite large. These hypboxes are repeated

again and again in each trace step, leading the number of conses measured by rank

to reach this large number. Because of the large amount of structure sharing, the

proof only requires 110 MB of disk space when printed. Also, we were also able

to optimize our Level 8 step-checking functions for rewrite traces in order to avoid

repeatedly checking these large hypboxes. As a result, we can check the proof in

under 20 minutes on Lhug-3. (This 19 GC proof improves upon a previous, successful

proof that took 241 GC. Even this larger proof was only 146 MB on disk, and with

our optimizations we could check it successfully in just over an hour on Lhug-3.)

These optimizations are not difficult. Our usual recognizer for well-formed

446

traces, rw.tracep, is a thin wrapper for the following flag function. This func-

tion performs poorly since it checks that every hypbox throughout the trace satisfies

rw.hypboxp, and these checks are often redundant.

Definition: rw.flag-tracep
(pequal* (rw.flag-tracep flag x)

(if (equal flag ’term)
(let ((method (car (car x)))

(rhs (cdr (car x)))
(lhs (car (car (cdr x))))
(iffp (cdr (car (cdr x))))
(hypbox (car (cdr (cdr x))))
;; extras are (car (cdr (cdr (cdr x)))))
(subtraces (cdr (cdr (cdr (cdr x))))))

(and (symbolp method)
(rw.hypboxp hypbox)
(logic.termp lhs)
(logic.termp rhs)
(booleanp iffp)
(rw.flag-tracep ’list subtraces)))

(if (consp x)
(and (rw.flag-tracep ’term (car x))

(rw.flag-tracep ’list (cdr x)))
t)))

Our optimized implementation takes an extra parameter, ext-hypbox, which

we think of as an “external hypbox.” For our function to be correct, the caller must

separately check that ext-hypbox satisfies rw.hypboxp. If the hypbox of x happens

to equal this external hypbox, we may conclude that it must be a valid rw.hypboxp,

so we do not bother to check it. Once we have established that the hypbox of x is

a valid (either because it is equal to the separately checked, external hypbox, or by

running rw.hypboxp on it), we can begin using it as the ext-hypbox as we check its

subtraces. Our optimized flag function is shown below.

447

Definition: rw.fast-flag-tracep
(pequal* (rw.fast-flag-tracep flag x ext-hypbox)

(if (equal flag ’term)
(let* ((method (car (car x)))

(rhs (cdr (car x)))
(lhs (car (car (cdr x))))
(iffp (cdr (car (cdr x))))
(hypbox (car (cdr (cdr x))))
(subtraces (cdr (cdr (cdr (cdr x))))))

(and (symbolp method)
(or (equal hypbox ext-hypbox)

(rw.hypboxp hypbox))
(logic.termp lhs)
(logic.termp rhs)
(booleanp iffp)
(rw.fast-flag-tracep ’list subtraces hypbox)))

(if (consp x)
(and (rw.fast-flag-tracep ’term (car x) ext-hypbox)

(rw.fast-flag-tracep ’list (cdr x) ext-hypbox))
t)))

By an ordinary flag-function induction, we can prove the correctness of our

optimized function. In our ACL2 proof sketch, the theorem is as follows.

ACL2 Code
(defthm rw.fast-tracep-removal

(implies (rw.hypboxp ext-hypbox)
(equal (rw.fast-tracep x ext-hypbox)

(rw.tracep x))))

Why is this fast? Recall from Section 9.1 that in most valid rewrite traces,

the hypbox for the trace must agree with the hypboxes in the subtraces. In fact, the

only exceptions are If General and If Same traces, where additional assumptions are

made while rewriting the true and false branches. As a result, in practice the (equal

448

hypbox ext-hypbox) check is almost always true, allowing us to avoid checking the

hypbox.

We also optimize the arity-checking of traces in two ways. First, rather than

repeatedly calling lookup, we collect the obligations to be checked and mergesort

them to remove duplicates, then use an ordered-subset check. This reduces the com-

putational complexity of the arity checking the trace from O(n2) to O(n log n), where

n is the number of function symbols in the trace. Second, we implement the same

ext-hypbox optimization as in rw.fast-tracep, so that we typically do not need to

redundantly gather the obligations from these repeated hypboxes.

There are two other well-formedness checks for traces, but these do not inspect

the hypboxes in any deep way, so we do not need to take any special measures to

optimize them.

In all, Level 10 involves 82 definitions and 616 theorems. The proofs come to

60.6 GC. The proof of the main lemma for the fast rewriter is the largest proof, at

19.6 GC. Despite these large proof sizes, on disk the proofs come to only 2.1 GB, due

to high amount of structure sharing and our use of the compacting printer.

12.10 Level 11 – Tactics

Level 11, our final proof checker, adds a single proof step that allows us to

use a proof skeleton produced by our tactic system as a proof. In support of this,

we translated the ACL2 proofs that justify all of the tactics described in Section

10.3. Since we can use fast-crw to rewrite whole clauses in a single step, proof sizes

become a non-issue and it was easy to translate the ACL2 proofs.

The step-checking function for our highest-level proof steps is shown below.

The proof skeleton is stored in the extras of the appeal, and is checked for valid-

449

ity using tactic.skeletonp, tactic.skeleton-okp, etc. Recall that the func-

tion tactic.skeleton-okp calls upon functions like tactic.split-first-okp and

tactic.crewrite-all-okp, which in turn invoke functions like clause.split and

fast-crw to ensure that the reduction is justified. Much like our arity checking for

rewrite traces in Level 8, our fast arity-checking function for skeletons simply collects

all of the function symbols, mergesorts them to remove duplicates, and carries out a

linear, ordered subset check.

Definition: tactic.compile-skeleton-okp
(pequal*
(tactic.compile-skeleton-okp x worlds axioms thms atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’tactic.compile-skeleton)
(tactic.skeletonp extras)
(tactic.skeleton-okp extras worlds)
(tactic.fast-skeleton-atblp extras atbl)
(tactic.skeleton-env-okp extras worlds axioms thms atbl)
(memberp conclusion (clause.clause-list-formulas

(tactic.original-conclusions extras)))
(equal (logic.strip-conclusions subproofs)

(clause.clause-list-formulas
(tactic.skeleton->goals extras))))))

A single tactic.compile-skeleton step can justify the use of any number

of any of our tactics. Because of this, the typical Level 11 proof is comprised of

two appeals: a level11.adapter that runs the static checks on the world (like the

adapter traces for Levels 8-10), and a single tactic.compile-skeleton appeal that

immediately justifies the proof using the skeleton produced by our tactic system.

450

All together, Level 11 involves 238 definitions and 1,169 theorems. The largest

proof is only 20.3 MC. Together, the proofs take 2.7 GC, or 2.6 GB when printed on

disk.

12.11 Comparing Proof Checkers

Higher-level proofs are typically more concise, faster to construct, and faster

to check than lower-level proofs. Because the amount of improvement realized at each

level depends upon the particulars of the proof being constructed, it is not possible

to make broad statements like “Level n proofs are 35% smaller and can be checked

20% more quickly than Level n − 1 proofs.” For instance, in Level 6 we verified our

clause splitting algorithm. This can result in considerable improvements in proofs

that make heavy use of clause splitting, but will not appreciably impact a proof that

is mainly carried out by rewriting.

Even so, we can at least illustrate the impact of higher-level proof checkers

for a couple of example lemmas. We instruct our interface to construct the proof at

each level. We can then compare the sizes of these proofs, as well as the amount of

time needed to build and construct them. We carried out these comparisons on our

ordinary development platform, and checked the proofs using our interface’s embed-

ded proof checker. Because of this, the times reported do not include any saving or

reading of files. We took no efforts to ensure the machine was unused by others, so

the times below may have some variance.

The “search” times reported below indicate how long it took our tactics to

run to construct the proof skeleton, while the “build” time is the time it takes for the

skeleton to be compiled into a Level n proof. Why does the search time change? In

the lower levels, we use the slow versions of crw and urw during the proof search,

and save the resulting rewrite traces in the proof skeleton. Although this means

451

the proof search takes longer, it reduces the overall time needed to find and build

the proof: if we had instead used fast-crw and fast-urw during the search, then

building the proof would require us to redo each rewrite with crw or urw to obtain

the traces to compile.

As a first example, we consider the faithfulness of the disjoined transitivity of

iff rule. In our ordinary bootstrapping process, this is a relatively large (441 MC)

Level 2 proof. Below, all sizes are reported in megaconses, and all times are reported

in seconds.

Level 1 2 3 4 5 6 7 8 9 10 11
Search 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.0 12.3 12.3
Build 406 226 117 106 102 101 101 0.8 0.5 .04 .008
Size 3,681 441 234 62 53 38 36 76 76 .8 .8
Check 11,440 2,968 914 433 408 342 332 50 50 12.8 12.6

As another example which gives a better picture of the higher levels, we con-

sider the faithfulness of our evaluation rule. In our ordinary bootstrapping process,

this is a medium size (222 MC) Level 7 proof, which makes comparably heavier use

of case splitting and only light use of rewriting. Our attempt to construct a Level

1 version of this proof failed, exhausting the 32 GB of memory available on the ma-

chine (the proof had grown to over 25 GC before the failure was encountered). For

comparison, our ACL2 proof of this lemma takes 82 seconds.

Lev. 1 2 3 4 5 6 7 8 9 10 11
Sch. 354 354 354 354 354 354 354 354 354 346 346
Bld. ∅ 6,238 2,879 2,279 2,157 1,482 768 691 167 65 8
Size ∅ 8,289 4,310 1,117 1,049 426 222 171 129 58 27
Chk. ∅ 31,451 5,323 2,816 3,120 2,737 1,874 1,430 440 457 163

12.12 Final Checks

Once the bootstrapping is completed, we are left with many directories of

proof files. We would now like to check these proofs using the program we developed

452

in Chapter 4.

We summarize these directories below. The “utilities” directory contains defi-

nitions and theorems for simple arithmetic and list functions, and the “logic” directory

includes our definitions and theorems about terms, formulas, and provability. The

“leveln” directories contain the definitions and proofs introduced at each level. The

“user” directory is not part of any of our proof-checkers, and only contains a few

trivial proofs about multiplication which use the Level 11 proof checker. (We imagine

that an end-user of Milawa would begin working here.)

Directory Defs Thms Largest Proof All Proofs Disk Size
(megaconses) (megaconses) (megabytes)

Utilities 133 1,659 112.9 2,998.7 586.0
Logic 201 2,015 353.7 6,426.1 959.6
Level2 87 514 345.5 9,038.8 205.1
Level3 230 815 614.2 7,990.3 201.0
Level4 168 991 1,151.7 19,112.9 288.0
Level5 192 1,071 383.8 9,328.1 184.9
Level6 55 402 758.9 3,279.7 116.5
Level7 83 749 445.6 949.5 43.9
Level8 184 1,059 707.8 6,810.0 114.0
Level9 427 2,475 193.7 1,547.6 903.4
Level10 82 616 19,559.1 60,576.3 2,115.9
Level11 238 1,169 20.3 2,717.8 2,635.1
User 1 28 4.7 84.2 77.9
Totals 2,081 13,563 130,860.0 8,431.0

Note that all of the proofs carried out in the utilities, logic, and level2 direc-

tories are Level 1 proofs which will be checked by logic.proofp. The proofs in the

level3 directory are Level 2 proofs which will be checked by level2.proofp, and so

on. The user directory contains Level 11 proofs. Of course, since we can use the

SWITCH command to change which proof checker is used by our core program, we can

treat all of these directories as one long list of events to be checked.

453

Because of the large amount of computation required to check all of these

proofs, we checkpoint our progress after processing each directory. That is, we process

all of the events from our utilities directory, then use the FINISH command to save

a new Milawa image where the utilities directory has been pre-loaded. We then use

this image to process the logic directory, and so on.

When we use computers to check proofs, we always run the risk that the

computing platform may make a mistake. This is partly unavoidable since computers

are physical devices, but we are also relying upon a collection of software, including

a Lisp environment and operating system, which are unverified and probably have

bugs. These bugs, or an error in the underlying hardware, could perhaps lead our

program to accept an invalid “proof” as legitimate.

To guard against this, we would like to check our proofs using a diverse collec-

tion of computers, operating systems, and Lisp environments. Accordingly, we have

assembled and made available a compressed archive of our generated proofs which

may be downloaded and checked independently. We also set out to check the proofs

ourselves, using the following hardware and operating systems.

– Lhug-3 is an HP Proliant DL585 server, and is part of the Mastodon cluster

at the University of Texas at Austin. It has four 2.2 GHz AMD Opteron 850

processors, 32 GB of memory, and runs 64-bit Linux.

– Nemesis is a Dell Precision 390 workstation with a single 2.13 GHz Intel Core

2 Duo processor and 4 GB of memory, running 32-bit Linux.

– Cele is an Apple MacBook laptop with a 2.4 GHz Intel Core 2 Duo processor

and 4 GB of memory, running Darwin 9.7.0.

– Jordan is a home-assembled workstation with a 3.0 GHz Intel Core 2 Duo pro-

cessor, and 4 GB of memory, running 64-bit Linux.

454

We had also checked previous versions of the proofs on Shadowfax, a Sun Fire

480W server with four 1.2 GHz UltraSparc III+ processors and 16 GB of memory,

running SunOS 5.9, but we no longer have access to this or any other reasonably

powerful Solaris machine.

A variety of Lisp implementations can be run on these computers. We consid-

ered using four Open Source implementations:

– Clozure Common Lisp (CCL) version 1.3 from June 2009,

– CLISP version 2.47 from October 2008,

– CMU Common Lisp (CMUCL) version 19f from April 2009, and

– Steel Bank Common Lisp (SBCL) version 1.0.29 from June 2009.

We have also tried using two commercial implementations,

– Allegro Common Lisp (ACL) version 8.0 from September 2006, and

– Scieneer Common Lisp (SCL) version 1.3.9 from November 2008.

The size of our proofs seems to stress many of these systems. In every case,

measures were needed to increase various default limitations on resources such as

the amount of heap space available and the depth of the call stack. We also made

adjustments to improve the performance of garbage collection, e.g., by increasing the

amount to allocate between collections.

Unfortunately, even with some effort, certain Lisps cannot process all of the

proofs on these computers. For instance, despite reconfiguring the image to allow for

a larger Lisp heap, Allegro runs out of memory on Nemesis while checking proofs in

the level10 directory. Similarly, even when we increase the stack limit to the (low)

455

maximum allowed by the Darwin operating system, CLISP runs out of stack space

while processing the utilities directory on Cele.

Below, we summarize the user time (in minutes) taken to check each directory

below for the systems we tried. The times we report are only suggestive: we took no

efforts to ensure the machines were not in use by others, and on multi-core machines

we typically ran more than one Lisp at a time. We write “err” to indicate Lisp bugs

such as segmentation faults, hangs, or other failures, and “mem” to indicate that the

Lisp ran out of stack or heap space. In no case was a proof ever rejected as invalid.

Platform Util Logic Lev2 Lev3 Lev4 Lev5 Lev6
Lhug-3/CCL 19.0 47.5 77.4 218.5 249.0 276.0 101.7
Lhug-3/CLISP 168.8 511.4 1074.0 1703.4 3162.3 2868.4 1169.8
Lhug-3/CMUCL 21.5 63.9 111.7 204.5 324.6 306.8 116.6
Lhug-3/SBCL 32.9 88.4 163.7 283.4 519.7 436.4 193.1
Lhug-3/SCL err - - - - - -

Nemesis/ACL 18.0 53.0 98.9 153.3 281.1 242.9 102.6
Nemesis/CCL err - - - - - -
Nemesis/CLISP 78.2 230.8 456.5 728.9 err - -
Nemesis/CMUCL 16.9 50.8 87.8 159.4 253.5 227.6 88.6
Nemesis/SBCL 17.4 52.8 86.0 145.4 235.9 220.4 82.2

Cele/CCL 13.5 33.9 50.2 103.7 172.6 173.5 67.5
Cele/CLISP mem - - - - - -
Cele/CMUCL 15.9 45.3 81.1 141.4 231.5 209.3 82.1
Cele/SBCL 18.2 46.3 84.0 144.4 242.1 220.5 83.9

Jordan/CCL 9.9 24.7 37.7 71.5 128.4 err -
Jordan/CLISP 69.3 194.2 380.0 606.3 1156.6 1014.3 408.5
Jordan/CMUCL 13.2 36.7 65.6 114.0 184.7 167.7 67.7
Jordan/SBCL 17.8 52.7 98.4 166.6 295.3 264.9 104.3

456

Platform Lev7 Lev8 Lev9 Lev10 Lev11 User Total
Lhug-3/CCL 47.0 317.4 128.0 162.4 102.0 2.8 29.1 hrs
Lhug-3/CLISP 480.4 3497.2 1162.0 1706.3 1199.2 30.4 13.0 days
Lhug-3/CMUCL 51.2 357.3 131.5 228.0 185.3 4.8 35.2 hrs
Lhug-3/SBCL 71.5 517.8 224.9 285.5 210.9 5.4 50.6 hrs
Lhug-3/SCL - - - - - - -

Nemesis/ACL 44.2 256.0 83.7 mem - - -
Nemesis/CCL - - - - - - -
Nemesis/CLISP - - - - - - -
Nemesis/CMUCL 38.1 267.7 94.6 165.2 129.1 3.3 26.4 hrs
Nemesis/SBCL 36.3 248.1 91.2 158.3 119.7 3.0 24.9 hrs

Cele/CCL 30.7 207.8 80.9 120.5 82.7 2.4 19.0 hrs
Cele/CLISP - - - - - - -
Cele/CMUCL 34.9 247.7 89.7 err - - -
Cele/SBCL 36.0 256.0 91.7 249.1 111.3 2.7 26.4 hrs

Jordan/CCL - - - - - - -
Jordan/CLISP 164.7 1214.9 390.8 658.2 478.8 12.3 4.7 days
Jordan/CMUCL 28.5 198.0 71.0 122.0 97.7 2.5 19.5 hrs
Jordan/SBCL 47.7 313.2 109.2 165.3 121.4 3.5 29.3 hrs

457

Chapter 13

Conclusion

In this dissertation, we have presented an approach for implementing a theorem

prover that can be trusted. Rather than carry out proofs in a fully expansive manner,

our approach is to show, ahead of time, that the theorem prover obeys the rules of

its logic.

We begin by introducing a simple logic, and a social proof which argues that

the rules of this logic are sound. Importantly, our logic allows us to introduce recursive

functions, and we can implement these functions on a Common Lisp system. To have

confidence that the Lisp system can run our functions correctly, we intentionally keep

this connection quite simple.

We then implement a proof checker system for our logic, which (1) serves as a

formalization for provability, and (2) can be run as a Common Lisp program to check

actual proofs. So that one may have confidence that the proof checker only accepts

theorems, we implement the program quite plainly and only allow it to accept proof

steps corresponding to the rules of inference of our logic.

We develop a small program around the proof checker which allows us to intro-

duce new definitions and prove theorems. Before accepting a formula as a theorem,

this system requires the user to provide a proof of the formula which is accepted by

the proof checker. These proofs are so large that the basic system would be impracti-

cal to use in formal verification. To counter this, we allow for the verification of new

proof checkers. These higher-level proof checkers may accept proofs that make use

458

of new kinds of proof steps that are not permitted by our basic system. By taking

advantage of these new proof steps, high-level proofs can be written more concisely

and checked more efficiently.

We write a theorem prover which is styled after ACL2, and which can carry out

a backward proof search involving induction, case splitting, assumptions, calculation,

rewriting with lemmas, destructor elimination, and other more manual techniques

such as generalization and the use of equalities. Our high-level approach to verifying

each of these techniques is to (1) introduce a fully expansive version of the technique,

then (2) show that it can be used to produce a proof of any claim being made.

To follow this approach, we begin by verifying each algorithm with ACL2.

Then, following the ACL2 proof as a sketch, we use our new theorem prover to

discover proofs which justify the use of each of its own algorithms. In this way, our

program is “self-verifying.”

Through a bootstrapping process involving several intermediate proof checkers,

we then mechanically translate these proofs into a format that can be checked by our

small program. This process culminates in the verification of a very high-level proof

checker which can employ all of our theorem prover’s techniques in a single step.

Finally, using a number of different computers and Lisp implementations to

minimize the chance of computer error, we check these proofs using our simple proof-

checking system.

13.1 Relation to Other Work

There are several general-purpose theorem provers in widespread use. Our

program is most closely related to ACL2 [52], but there are also several theorem

proving systems based on higher-order logic, including HOL [34], HOL Light [40],

459

Isabelle/HOL [67], and PVS [71]. Some other popular theorem provers, such as

Coq [7] and Nuprl [88], employ constructive type theory.

Proof Representation

A major difference among these systems is the representation of proofs. In the

ACL2 system, proofs are “whatever the defthm command accepts,” and formal proofs

are not generated. The proof search is influenced by a database of implicit rules and

also by explicit hints, and may involve rewriting, arithmetic reasoning, induction,

BDDs, and other techniques. These proof methods are highly complex and do not

resemble the rules of the ACL2 logic.

Proof attempts in ACL2 produce human-readable logs which explain generally

what the theorem prover is doing. But these logs contain English text and are not

suitable for checking by other programs, so there is no readily available mechanism

for gaining additional confidence in an ACL2 proof. Moreover, ACL2 itself has not

been subjected to any mechanized formal analysis, and many reasoning errors have

been discovered [51] in official releases, as summarized below.

ACL2 Release Reasoning Errors Fixed
October, 1998 (Version 2.3) Subversive recursions
August, 1999 (2.4) Immediate force mode
June, 2000 (2.5) Metafunctions with hypotheses
November, 2001 (2.6) Linear arithmetic

Evaluation in proofs
November, 2002 (2.7) Functional instantiation

BDDs
Guards

March, 2004 (2.8) Tautology checking
ACL2 arrays
Proof checker commands
Defining packages
Tracking axioms
Type prescriptions in equivalences
Redundancy and single-threaded objects

460

October, 2004 (2.9) Package names
Tracking program mode
Macro expansion
Linear arithmetic

August, 2005 (2.9.3) Program mode in defconst
February, 2006 (2.9.4) Meta rules with local events
June, 2006 (3.0) Program mode in local
August, 2006 (3.0.1) Local table events
December, 2006 (3.1) Package witnesses

Forcing in linear arithmetic
Redundancy and measures

April, 2007 (3.2) Unknown/hidden packages
Meta rules
Redefinition and program mode
Raw lisp code in tracing

August, 2008 (3.4) MBE in encapsulates
State (value triples)
Redundancy and built-in functions

May, 2009 (3.5) Flet handling
Inferred type-prescriptions in encapsulate
ACL2 arrays
Type-reasoning in lambdas
Termination

August, 2009 (3.6) Redundancy and ruler extenders
Subversive recursions for constraints

September, 2009 (3.6.1) Ruler extenders

In contrast, systems like HOL and HOL Light follow the fully expansive

LCF [30] approach. Here, theorems are objects of type thm and represent proofs

of sequents, Γ ` c, where Γ is a set of assumptions and c is a conclusion. The thm

type is abstract, so the only way to construct a thm is to use a built-in constructor.

In a “pure” implementation of an LCF-style system (e.g., HOL Light), these

constructors correspond to the rules of inference for the logic. For example, the

reflexivity rule in higher-order logic is:

∅ ` t = t

461

The corresponding constructor, REFL, takes a term-typed argument t as input and

produces a thm with no assumptions and with the conclusion t = t. As another

example, the rule of inference for discharging assumptions is:

Γ ` t2
Γ− {t1} ` t1 → t2

In other words, if t2 follows from Γ, then t1 → t2 follows after we remove t1 from Γ.

The corresponding function, DISCH, takes t1 and a thm of the form Γ ` t2 as inputs,

and produces the thm, Γ− {t1} ` t1 → t2.

If the type system is implemented correctly, the only way to create a thm ob-

ject is to invoke constructors like REFL and DISCH. As a result, in a pure system, any

thm-type object must have been created entirely by following the rules of inference.

Consequently, the intermediate steps of a proof need not be stored, although some-

times proof recording schemes have been added to LCF-style systems [93, 4, 68], either

as a way to export proofs into other theorem provers or to facilitate double-checking

by external proof checkers.

It is also possible to “impurely” adopt the LCF approach. Here, an abstract

thm-type is still used, but the proof constructors may be more powerful than the

primitive rules of inference. An example is the PVS [70] system, which includes

powerful primitives such as rewriting with lemmas. This approach is almost ACL2-

like in that the correctness of the system’s reasoning depends upon a relatively large

amount of code, and “proofs” of non-theorems [38] sometimes result.

Coq and Nuprl have another, well-defined notion of proof. Certain types are

called propositions. Whenever the type of an object x is a proposition, we say x

itself is a proof of that proposition. No abstract type is used; instead the proof rules

are directly encoded into the type system as typing rules. This is the Curry-Howard

462

isomorphism: the proposition “P implies Q” can be encoded as the arrow type of

functions from P to Q, i.e., P → Q.

Like the thm approach, the correctness of these systems depends on a relatively

small kernel. The (relatively complex) type system needs to be correctly implemented,

and the typing rules for propositions need to correspond to the logic. Since whole

proof terms are stored, this is potentially less space-efficient than the abstract thm

type approach. In Coq, this is somewhat alleviated by a complex notion of term

equality wherein reducibly equivalent terms are said to be equal. For example, Coq

can prove 2 + 3 = 5 with a single use of its reflexivity rule.

Milawa’s notion of proof differs from all of these approaches.

At lower levels, our proofs are somewhat LCF-like in that the proofs are carried

out in a fully expansive manner. On the other hand, an important part of the LCF

approach is that the type system ensures that every thm has been constructed with

a built-in constructor, so that the intermediate steps of every thm may be garbage

collected. Since no type system prevents us from constructing invalid appeals, low-

level Milawa proofs must be stored “in full.”

At higher levels, our proofs are more ACL2- or PVS-like, in that they make

use of assumptions, evaluation, rewriting, and other algorithms which can emit no

justification of their work. On the other hand, our algorithms have been verified, and

unlike ACL2 we still have a well-defined notion of proof, viz. those appeals accepted

by level11.proofp.

Finding Proofs

Another way in which theorem provers are distinguished is in the style of

interaction used to find proofs. In each prover besides ACL2, proofs are constructed

with tactics written in a general purpose programming language such as ML. The

463

flexible nature of these programming language allows for tactics to be easily composed,

and the user can make use of strategies or tacticals which can try to apply tactics in

a variety of ways, e.g., “try these tactics and use the first one that succeeds.”

If the validation produced by the tactic attempts to construct an invalid proof,

an error will be caused by the thm constructor and the proof attempt will fail. Hence,

a tactic may have bugs like any ordinary program, but the proofs it constructs can

be trusted even without needing to verify the tactic, itself.

In contrast, the ACL2 system does not have an explicit notion of proof, and its

closest approximation of tactics and tacticals, called proof checker macros, are rarely

used. Instead, following The Method, most work is accomplished by proving lemmas

that add rewrite rules to influence the ACL2 rewriter. When the rewriter is unable

to find the proof using the lemmas available, the user may provide extra hints, either

manually or automatically through a hint-computation mechanism.

Nothing prevents a tactic-based system from following the heuristic rewriting

approach. For instance, Boulton [9] has implemented tactics to emulate some of

NQTHM’s automation in HOL, and lemma-based simplification is available in most

provers, e.g., autorewrite in Coq, the rewrite package in Nuprl, rewrite_tac in

HOL4, and the simp tactic in Isabelle/HOL. Our tactics are in this same spirit, and

were intended to allow us to carry out ACL2-like steps.

Because our system is first-order, the tactic systems of other theorem provers

are considerably more flexible than ours. We cannot dynamically construct or com-

pose validations, and to add a new tactic we must modify our tactic compiler. The

“list of goals” approach in our skeleton also limits the flexibility of tacticals, e.g.,

considerable infrastructure must be developed to implement our waterfall, whereas in

a higher-order tactic system one would implement this as a relatively simple tactical.

464

Formal Analysis of Proof Checkers

A key construction in Gödel’s [28] proof was the introduction, in his logic,

of a proof checking program for his logic. The logics used by theorem provers are

expressive enough to introduce proof checkers, as we have done with logic.proofp,

and such embeddings have been carried out in many projects.

Shankar [82] carried out a proof of the incompleteness theorem in NQTHM by

first defining, as an NQTHM function, a proof checker for Shoenfield’s first-order logic

with Cohen’s Z2 axioms. In this effort, NQTHM functions were also implemented to

implement rules such as tautology checking and equivalence checking, and shown with

NQTHM to be correct with respect to the proof checker. We have reimplemented

many of these functions in our system (see Chapter 5), and this use of NQTHM as a

metalogic is quite similar to our use of ACL2 to sketch out our proofs.

In a similar effort, incompleteness was studied by O’Connor [69] in the Coq

theorem prover. In this work, proofs are represented using dependent types, so that

any object of type Prf represents a valid proof.

Such embeddings have also been used to study properties of proof-checking

programs. For instance, von Wright [90, 91] wrote a proof checker for higher-order

logic in HOL. This involved defining a HOL specification, Is_proof, which describes

the valid proofs. A primitive, imperative programming language was then defined

within HOL, and a proof checking program was written in this language. HOL was

used to show the imperative program implemented the high-level Is_proof specifi-

cation.

Ridge and Margetson [75] wrote a first-order theorem prover as definitions in

Isabelle/HOL and, using Isabelle/HOL, proved the program to be sound and com-

plete.

465

Harrison [41] has mimicked the implementation of HOL Light, an OCaml

program, as a HOL Light specification. By assuming an additional axiom about sets,

he can show the encoded implementation is consistent. Without the axiom, he can

show the encoded implementation, minus the axiom of infinity, is consistent. These

results indicate “something close to the actual implementation of HOL” is sound.

Barras [2] has used Coq to prove the strong normalization and decidability of

type inference for the Calculus of Constructions. This work may be an important

first step toward the verification of the kernel of Coq (which implements the Calculus

of Inductive Constructions, rather than the Calculus of Constructions).

Independently Checking Proofs

There have also been some projects where one system is used to check the

work of another. This approach may also be useful in separating proof search from

proof construction, or may simply be used to import or double-check proofs from one

system with another.

McCune and Shumsky [64] have written ACL2 functions to check proof objects

emitted by the resolution prover Otter (and its successor, Prover9) for validity. The

proof search is carried out by Otter, and the ACL2 program only checks that Otter

did not make a mistake. No attempt is made to verify Otter itself (which is an

optimized C program). Instead, an ACL2 function is introduced to check the Otter

proof transcript, and ACL2 is used to prove that the checking function is sound with

respect to a simple notion of interpreting formulas.

Obua and Skalberg [68] have extended HOL Light with a proof recorder that

tracks calls to the proof constructors. A structure-sharing scheme is used in order to

combat the size of proof objects, and many proofs can be read into Isabelle/HOL and

checked independently from HOL Light. The authors speculate that adding “higher

466

inference rules,” such as rewriting, might help to make the emitted proofs smaller.

Caldwell and Cowles [22] describe preliminary work on independently checking

Nuprl proofs with a program written in ACL2. As they emphasize, “we are not

making claims about the correctness of Nuprl itself,” which was seen as impractically

hard: Nuprl’s implementation involves a 60,000-line Lisp core and a 40,000-line ML

interface, with 167 rules of inference that are sometimes complicated, e.g., the arith

rule. The project is seems to be in the early stages.

The type inferencing algorithm verified by Barras [2] for the Calculus of Con-

structions has been combined with a parser and pretty-printer to obtain a stand-alone

proof checking program for the Calculus of Constructions, and this program can be

used to independently check (some) proofs from Coq.

Meta Reasoning

Our system uses logic.proofp in two ways. As our lowest-level proof checker,

it is executed by our Common Lisp program to check proofs during the initial stages

of bootstrapping. But it also serves as a formalization of provability in our logic,

which allows us to reason about the fidelity of our higher-level proof checkers.

Even without such a proof checker, many other theorem provers have some

support for meta reasoning (reasoning about provability). Most of this work follows,

with minor differences, the metafunction approach [13], which involves five steps:

1. An encoding for the relevant terms is introduced,

2. A semantic function, meaning(term, env), is introduced to evaluate an encoded

term w.r.t. an environment that provides values for variables,

3. A “metafunction”, fn(term), is introduced to simplify encoded terms,

467

4. The user proves meaning(fn(term), env) = meaning(term, env), for all well-

formed encoded terms and for all environments, to demonstrate fn can be

trusted, and

5. Some evaluation mechanism allows fn to be used to simplify encoded terms in

proofs.

In ACL2, a standard encoding (quoting) can be used, and meaning functions

for a fixed set of concepts can be introduced using the defevaluator facility. A

metafunction, fn, is a regular ACL2 program, written as a recursive function that

manipulates encoded terms. A built-in mechanism allows the system to begin using

a metafunction after the meaning theorem has been proven.

Metafunctions can be a useful tool [85] for advanced ACL2 users, but they

have limitations. They are subservient to the rewriter and cannot keep state between

invocations, i.e., for building up databases of facts. In recent versions of ACL2, these

issues are largely solved by a new feature called clause processors [55], which are

essentially metafunctions that operate on clauses instead of terms.

Unfortunately, since the ACL2 simplifier is not a function in the ACL2 logic,

metafunctions can only call upon it heuristically [46]. That is, even if ACL2 can

rewrite term to term′, we cannot assume term = term′ when we try to prove that the

meaning of terms is preserved by our metafunction.

ACL2’s proof search is controlled by a large amount of unverified code, and it

is difficult to imagine “lifting” any substantial part of this into metafunctions. Many

features, such as linear arithmetic and type reasoning, are deeply integrated into the

rewriter [11], involve keeping track of state, and generally do not fit well into the

metafunction or clause processing paradigms. We would also face a bootstrapping

problem: even if we could cleanly extract a proof technique like type reasoning into

468

a metafunction, could we prove this metafunction preserves the meaning of terms

without using type reasoning? We do not see much hope of moving in this direction.

Metatheoretic extensibility is a challenge for HOL systems, where to add a

new proof procedure “we must somehow rip open an abstract type, tinker with it to

add a new constructor, and then close it up again.” [39]

Slind [84] proposed a scheme for allowing mk_thm, an “arbitrary” thm con-

structor that does not correspond to any rule of inference, to be used under restricted

circumstances. First, the semantics of ML would be formalized in HOL, as would the

HOL implementation. Then, mk_thm t is to be permitted only if we can prove there

is some function f that produces a usual, fully expansive HOL proof of t. But this

idea has not been implemented.

More recently Chaieb and Nipkow [23] have written and verified a quantifier-

elimination procedure for Presburger arithmetic in Isabelle/HOL. They encode Pres-

burger formulas with a new type, and define their own meaning function to map

encoded formulas into Booleans (the formulas of HOL). A metafunction-like elimi-

nation procedure is implemented in a subset of HOL which can be compiled to ML

using a HOL compiler [5]. Finally, a new, experimental rule of inference is added to

the system so executions of the ML program are allowed to be treated as proofs of

equality. This system is reportedly 200 times faster for solving Presburger formulas

than an equivalent, tactic-based solution. This technique avoids the burden of for-

malizing an ML system and a HOL implementation as Slind proposed, but the code

for constructing thm objects remains separated from the logic, and as a result we still

cannot reason about thm construction and the provability of formulas.

Metafunctions are also supported in Coq. Grégoire and Mahboubi [35] have

introduced a procedure for reasoning about equality between polynomials in commu-

tative rings. They define a new type to represent encoded polynomials over a ring

469

and provide a meaning function as above. They show a metafunction-like canoni-

calization routine preserves the meaning of encoded terms, and their procedure can

then be used in proofs via Coq’s evaluation/reduction facilities. As in Chaieb and

Nipkow’s work, no method is available for reasoning about the rules of inference and

provability of formulas in general.

Knoblock and Constable [56] proposed two strategies for adding metareasoning

to Nuprl. One approach involved a hierarchy of languages, where each PRLn+1 would

include an encoding of the PRLn proofs. In the other, a stack of languages would

not be needed, and instead part of PRL1 would be directly encoded into PRL0. But

these ideas have not been implemented.

13.2 Future Directions

No matter what logic and basic architecture is used, a large undertaking is

required to develop a theorem prover and the tactic or lemma libraries to make it

useful. Since mechanically verifying the theorem prover’s algorithms certainly adds to

this work, some important considerations are how much effort is required and whether

it is worthwhile.

This project began four years ago, in the fall of 2005. The main programming

and proving effort taking the author about two and a half years. The ACL2 proof

scripts, which contain all of the function definitions and lemmas for our theorem

prover, and which also implement the user interface, come to around 110,000 lines

with about 30% comments or blank lines. The bootstrapping code, which drives the

interface to carry out the self-verification process, takes another 60,000 lines of code,

about 40% of which is comments or blank lines. In comparison with other popular

theorem provers, Milawa is admittedly modest in its capabilities, yet this amount of

effort does not seem unreasonable.

470

If we were to develop a successor to Milawa, there are a couple of things we

would do differently from the beginning. The syntax of formulas in our logic and

many of our rules of inference have been directly adopted from Shoenfield’s [83] 1967

text. This decision was made early in the project, and was motivated by the desire to

implement something very close to the ACL2 logic. (Descriptions of the ACL2 logic,

such as Computer Aided Reasoning: An Approach [50], A Precise Description of the

ACL2 Logic [53], and Structured Theory Development for a Mechanized Logic [54]

typically adopt Shoenfield’s presentation, with the qualification that any classical

first-order logic with equality would be acceptable.) In retrospect, implementing a

Hilbert-style system seems like a mistake. Working with formulas rather than sequents

or clauses is needlessly difficult because one must always be concerned with the shape

of the formulas. For instance, this leads to disjoined and non-disjoined versions of

many rules.

Our proof representation could also likely be improved by allowing each proof

to have a list of conclusions, rather than a single conclusion. In particular, it is not

possible to develop a high-level step-checker for our clause cleaning routine, since it

applies to a list of clauses rather than to a single clause. We can work around this

in some ways, e.g., by integrating cleaning into our splitting algorithm. But it would

be better to be able to support clause-list to clause-list reductions directly.

But to really develop an “industrial strength” version of Milawa, we think the

two main areas to improve upon are the efficiency and expressivity of our program-

ming language.

Theorem provers are often used as tools for modeling other systems and prov-

ing properties about those models. The ability to animate these models efficiently is

often considered to be unimportant, and specifications are often written using con-

structs that are difficult to execute, e.g., quantifiers. Some notable exceptions include

471

models of processors [92], floating point circuits [78, 49], etc., where co-simulation is

used to gain confidence in the validity of the model. Here, execution efficiency directly

impacts the amount of co-simulation which is feasible.

Efficient animation may have greater importance in systems which, like ours,

involve developing theorem proving algorithms in the logic. In our system, our pri-

mary theorem proving algorithms are written in our logic. In other systems with

reflective capabilities, the efficiency of metafunctions, etc., would also seem to be im-

portant. Because of this, many theorem proving systems now also include features to

facilitate efficient execution, for instance the Coq system allows its specifications to be

run as OCaml programs [7], and Isabelle/HOL specifications can now be translated

into ML programs [5].

In ACL2, functions in the logic can be executed as Common Lisp programs

in a fairly direct way. This connection is quite sophisticated, e.g., specifications can

be annotated with type declarations and the ACL2 system can verify that these

annotations are justified; the compiler can then use these annotations to use native

machine arithmetic, etc. Historically, execution efficiency has been regarded as one

of ACL2’s strengths in comparison to other theorem provers; for instance, Gordon,

et. al, [32] have developed a mechanism to use ACL2 as an execution engine for HOL

models, and report that using ACL2 execution is 300 times faster than using HOL’s

EVAL facility when animating a specification of the floating-point unit of an ARM

co-processor.

Our system is like ACL2’s in that we can run functions in our logic using

a Common Lisp system. Although we can write programs somewhat efficiently by

inlining function calls and using tail recursion, our connection to Common Lisp is

much less sophisticated than ACL2’s. To name a few inefficiencies with our approach:

472

– We do not have a mechanism like ACL2’s guards, so we cannot safely annotate

our functions with type declarations. As a result, all arithmetic in Milawa

must be performed on arbitrary-precision integers, and primitives like + and

car always involve runtime type checking.

– We lack any kind of function object or function pointer, so case statements must

be used to emulate polymorphic calls.

– We do not have any mutable structures such as arrays and hash tables. Instead,

we must rely upon trees of conses to implement records, lists, search trees, and

so on. This leads many computations to perform consing, causing more work

for the garbage collector.

– We have not implemented any parallelism capabilities, which is a particularly

significant limitation given current trends toward multi-core processors.

Another minor note is that because our arithmetic needs have been so light,

we have not implemented primitive functions for multiplication, division, remainder,

and other bitwise operations. This would be very easy to remedy by adding new

primitives—we only need to extend the initial arity table and the base evaluator.

At any rate, a particularly interesting line of future research would be to

identify a small set of primitives whose behavior could be cleanly described through

axioms, yet which would allow for the implementation of high-performance, parallel

algorithms.

A good example of this is the fast association list system implemented by

Boyer and Hunt [16] as an experimental extension to ACL2. Here, the special func-

tion (hons-acons key val alist) is logically equal to (cons (cons key val)

473

alist), and (hons-get key alist) is akin to our lookup function. When hons-

acons is used to construct an association list, a corresponding, “hidden” hash table

is extended by binding key to val. When hons-get is used, the value can be read

from the hash table rather than the alist. For this optimization to take place, the

alist must be used in a single-threaded manner. That is, if we extend the alist x to

x′ by calling (hons-acons k v x), then subsequent calls of hons-acons and hons-

get should only be applied to x′, and not to x. If this discipline is not followed, the

hash table is not used, warning messages about slow performance are generated, and

ordinary association list operations are carried out.

Another example is Rager’s [73] experimental introduction of parallelism prim-

itives into ACL2. A plet construct is like let, but allows for parallel execution of the

computations being bound. That is, in the following example, the v1, . . . , vn might

be run in parallel:

(plet ((x1 v1)
. . .
(xn vn))

...)

Another new primitive, pand, can compute (if (and v1 . . . vn) t nil) by per-

haps executing each vi in parallel. This evaluation can also short-circuit, e.g., once

any vi evaluates to nil, any threads computing the other values can be aborted.

In Milawa there is very little “system-level” code that makes direct use of

Common Lisp primitives. Instead, almost all of our functions are defined atop our

logical primitives. Because of this, it would be relatively easy to change our system

by using new definitions for primitives like car and +, and this may open many

possibilities for extensions of the varieties just mentioned.

For instance, in fast association lists, the actual alist must also be constructed,

so that if it is passed as an argument to functions like car, cdr, and equal, the

474

correct result can be determined. In Milawa, it might be possible to avoid this

overhead, by having primitives like car and cdr implement special cases for hash

tables, e.g., they could cause an error, or could perhaps print a performance warning

before constructing an alist from the hash table.

Similarly, Rager’s parallelism primitives do not permit producer/consumer

style parallelism. It seems difficult to develop a logical story to explain the behavior

of a shared queue if car or cdr might be called on the queue while values are still

being produced. Queue-aware versions of the primitives, which could block until the

queue has additional data, might neatly solve this problem.

We now consider the expressivity of our programming language. With the

exception of ACL2, most general-purpose theorem provers use logics which are con-

siderably more expressive than ours. Notably, our logic lacks static typing, quantifiers,

and higher-order functions.

In Computer Aided Reasoning: An Approach, Kaufmann, Manolios, and Moore

assert that these limitations “can be overcome without undue violence to the intuitions

you are trying to capture,” [50] and indeed the ACL2 and NQTHM systems have been

successfully used in many wide-ranging hardware and software verification projects,

as mentioned at the beginning of Chapter 2. It may also be that the relative simplicity

of our formulas has played a role in our success in reasoning about proofs.

And yet, doing without higher-order functions has not been particularly easy.

Our tactic system is quite convoluted and is much less flexible than that of a true

LCF-style system. This is largely due to our inability to dynamically produce valida-

tion functions. A great number of our theorems and functions—for introducing new

“types,” for recognizing the validity of steps in traces and proofs, and so on—have a

boilerplate feel. It seems like much of this could be made easier using higher-order

functions and a typed logic.

475

Above, we noted that although efficient animation is often not important when

writing models of other systems, it may be much more important if our theorem

proving algorithms are written in the logic. Perhaps, similarly, while the limitations of

first-order systems are not too damaging when modeling hardware, virtual machines,

and so on, the greater flexibility of higher-order systems is desirable when writing

theorem provers.

476

Appendices

477

Appendix A

Derivations for Iff

In this appendix, we present the details behind the formal theorems and de-

rived rules from Section 7.3 about the function iff.

Derived Rule A-1. If of t

(if t b c) = b

Derivation. (8)

t 6= nil Axiom t not nil
(if t b c) = b If when not nil

Derived Rule A-2. If of nil

(if nil b c) = c

Derivation. (9)

nil = nil Reflexivity
(if nil b c) = c If when nil

Formal Theorem A-1. Iff lhs false

x 6= nil ∨ (iff x y) = (if y nil t)

Proof.

478

(iff x y)
= (if x (if y t nil) (if y nil t))

Definition of iff

x 6= nil ∨ (iff x y)
= (if x (if y t nil) (if y nil t))

Expansion (*1)

x 6= nil ∨ x = nil Prop. schema
x 6= nil ∨ (if x (if y t nil) (if y nil t))

= (if y nil t)
Dj. if when nil

x 6= nil ∨ (iff x y) = (if y nil t) Dj. trans. = *1

Formal Theorem A-2. Iff lhs true

x = nil ∨ (iff x y) = (if y t nil)

Proof.

(iff x y)
= (if x (if y t nil) (if y nil t))

Definition of iff

x = nil ∨ (iff x y)
= (if x (if y t nil) (if y nil t))

Expansion (*1)

x 6= nil ∨ x = nil Prop. schema
x = nil ∨ x 6= nil Commute or
x = nil ∨ (if x (if y t nil) (if y nil t))

= (if y t nil)
Dj. if when nnil

x = nil ∨ (iff x y) = (if y t nil) Dj. trans. = *1

Formal Theorem A-3. Iff rhs false

y 6= nil ∨ (iff x y) = (if x nil t)

Proof.

(iff x y)
= (if x (if y t nil) (if y nil t))

Definition of iff

y 6= nil ∨ (iff x y)
= (if x (if y t nil) (if y nil t))

Expansion (*1)

x = x Reflexivity
y 6= nil ∨ x = x Expansion (*2a)
y 6= nil ∨ y = nil Prop. schema
y 6= nil ∨ (if y t nil) = nil Dj. if when nil (*2b)

479

y 6= nil ∨ (if y nil t) = t Dj. if when nil (*2c)
y 6= nil ∨ (if x (if y t nil) (if y nil t))

= (if x nil t)
Dj. = args *2abc

y 6= nil ∨ (iff x y) = (if x nil t) Dj. trans. = *1

Formal Theorem A-4. Iff rhs true

y = nil ∨ (iff x y) = (if x t nil)

Proof.

(iff x y)
= (if x (if y t nil) (if y nil t))

Definition of iff

y = nil ∨ (iff x y)
= (if x (if y t nil) (if y nil t))

Expansion (*1)

x = x Reflexivity
y = nil ∨ x = x Expansion (*2a)
y 6= nil ∨ y = nil Prop. schema
y = nil ∨ y 6= nil Commute or
y = nil ∨ (if y t nil) = t Dj. if when nnil (*2b)
y = nil ∨ (if y nil t) = nil Dj. if when nnil (*2c)
y = nil ∨ (if x (if y t nil) (if y nil t))

= (if x t nil)
Dj. = args *2abc

y = nil ∨ (iff x y) = (if x t nil) Dj. trans. = *1

Formal Theorem A-5. Iff both true

x = nil ∨ y = nil ∨ (iff x y) = t

Proof.

x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
(x = nil ∨ y = nil) ∨ (iff x y) = (if y t nil) Multi assoc exp. (*1)
x = nil ∨ (if x y z) = y Ax. if when nnil
y = nil ∨ (if y t nil) = t Instantiation
(x = nil ∨ y = nil) ∨ (if y t nil) = t Multi assoc exp.
(x = nil ∨ y = nil) ∨ (iff x y) = t Dj. trans. = *1
x = nil ∨ y = nil ∨ (iff x y) = t Right assoc.

480

Formal Theorem A-6. Iff both false

x 6= nil ∨ y 6= nil ∨ (iff x y) = t

Proof.

x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
(x 6= nil ∨ y 6= nil) ∨ (iff x y) = (if y nil t) Multi assoc exp. (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
y 6= nil ∨ (if y nil t) = t Instantiation
(x 6= nil ∨ y 6= nil) ∨ (if y nil t) = t Multi assoc exp.
(x 6= nil ∨ y 6= nil) ∨ (iff x y) = t Dj. trans. = *1
x 6= nil ∨ y 6= nil ∨ (iff x y) = t Right assoc.

Formal Theorem A-7. Iff true false

x = nil ∨ y 6= nil ∨ (iff x y) = nil

Proof.

x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
(x = nil ∨ y 6= nil) ∨ (iff x y) = (if y t nil) Multi assoc exp. (*1)
x = nil ∨ (if x y z) = z Axiom if when nil
y 6= nil ∨ (if y t nil) = nil Instantiation
(x = nil ∨ y 6= nil) ∨ (if y t nil) = nil Multi assoc exp.
(x = nil ∨ y 6= nil) ∨ (iff x y) = nil Dj. trans. = *1
x = nil ∨ y 6= nil ∨ (iff x y) = nil Right assoc.

Formal Theorem A-8. Iff false true

x 6= nil ∨ y = nil ∨ (iff x y) = nil

Proof.

x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
(x 6= nil ∨ y = nil) ∨ (iff x y) = (if y nil t) Multi assoc exp. (*1)
x = nil ∨ (if x y z) = y Ax. if when nnil
y = nil ∨ (if y nil t) = nil Instantiation

481

(x 6= nil ∨ y = nil) ∨ (if y nil t) = nil Multi assoc exp.
(x 6= nil ∨ y = nil) ∨ (iff x y) = nil Dj. trans. = *1
x 6= nil ∨ y = nil ∨ (iff x y) = nil Right assoc.

Formal Theorem A-9. Iff t when not nil

x = nil ∨ (iff x t) = t

Proof.

x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
x = nil ∨ (iff x t) = (if t t nil) Instantiation (*1)
(if t t nil) = t If of t
x = nil ∨ (if t t nil) = t Expansion
x = nil ∨ (iff x t) = t Dj. trans. = *1

Derived Rule A-3. Iff t from 6= nil

a 6= nil
(iff a t) = t

Derivation. (7)

x = nil ∨ (iff x t) = t Th. iff t, nnil
a = nil ∨ (iff a t) = t Instantiation
a 6= nil Given
(iff a t) = t Modus ponens 2

Derived Rule A-4. Disjoined iff t from 6= nil

P ∨ a 6= nil
P ∨ (iff a t) = t

Derivation. (17)

x = nil ∨ (iff x t) = t Th. iff t, nnil
a = nil ∨ (iff a t) = t Instantiation
P ∨ a = nil ∨ (iff a t) = t Expansion

482

P ∨ a 6= nil Given
P ∨ (iff a t) = t Dj. mp2

Formal Theorem A-10. Iff t when nil

x 6= nil ∨ (iff x t) = nil

Proof.

x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
x 6= nil ∨ (iff x t) = (if t nil t) Instantiation (*1)
(if t nil nil) = nil If of t
x 6= nil ∨ (if t nil nil) = nil Expansion
x 6= nil ∨ (iff x t) = nil Dj. trans. = *1

Derived Rule A-5. 6= nil from iff t

(iff a t) 6= nil
a 6= nil

Derivation. (9)

x 6= nil ∨ (iff x t) = nil Th. iff t when nil
a 6= nil ∨ (iff a t) = nil Instantiation
(iff a t) = nil ∨ a 6= nil Commute or
(iff a t) 6= nil Given
a 6= nil Modus ponens 2

Derived Rule A-6. Disjoined 6= nil from iff t

P ∨ (iff a t) 6= nil
P ∨ a 6= nil

Derivation. (19)

x 6= nil ∨ (iff x t) = nil Th. iff t when nil
a 6= nil ∨ (iff a t) = nil Instantiation
(iff a t) = nil ∨ a 6= nil Commute or

483

P ∨ (iff a t) = nil ∨ a 6= nil Expansion
P ∨ (iff a t) 6= nil Given
P ∨ a 6= nil Dj. mp2

Formal Theorem A-11. Iff nil when nil

x 6= nil ∨ (iff x nil) = t

Proof.

x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
x 6= nil ∨ (iff x nil) = (if nil nil t) Instantiation (*1)
(if nil nil t) = nil If of nil
x 6= nil ∨ (if nil nil t) = nil Expansion
x 6= nil ∨ (iff x nil) = nil Dj. trans. = *1

Formal Theorem A-12. Iff nil when not nil

x = nil ∨ (iff x nil) = nil

Proof.

x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
x = nil ∨ (iff x nil) = (if nil t nil) Instantiation (*1)
(if nil t nil) = nil If of nil
x = nil ∨ (if nil t nil) = nil Expansion
x = nil ∨ (iff x nil) = nil Dj. trans. = *1

Formal Theorem A-13. Iff nil or t

(iff x y) = nil ∨ (iff x y) = t

Proof.

x = nil ∨ y = nil ∨ (iff x y) = t Th. iff both true
x 6= nil ∨ y = nil ∨ (iff x y) = nil Th. iff false true

484

(y = nil ∨ (iff x y) = t)
∨ y = nil ∨ (iff x y) = nil

Cut

y = nil ∨ (iff x y) = t
∨ y = nil ∨ (iff x y) = nil

Right assoc.

y = nil ∨ (iff x y) = nil ∨ (iff x y) = t Generic subset (*1)
x = nil ∨ y 6= nil ∨ (iff x y) = nil Th. iff true false
x 6= nil ∨ y 6= nil ∨ (iff x y) = t Th. iff both false
(y 6= nil ∨ (iff x y) = nil)

∨ y 6= nil ∨ (iff x y) = t
Cut

y 6= nil ∨ (iff x y) = nil
∨ y 6= nil ∨ (iff x y) = t

Right assoc.

y 6= nil ∨ (iff x y) = nil ∨ (iff x y) = t Generic subset
((iff x y) = nil ∨ (iff x y) = t)

∨ (iff x y) = nil ∨ (iff x y) = t
Cut *1

(iff x y) = nil ∨ (iff x y) = t Contraction

Formal Theorem A-14. Reflexivity of iff

(iff x x) = t

Proof.

x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
x = nil ∨ (iff x x) = (if x t nil) Instantiation (*1a)
x = nil ∨ (if x y z) = y Ax. if when nnil
x = nil ∨ (if x t nil) = t Instantiation
x = nil ∨ (iff x x) = t Dj. trans. = *1a (*1)
x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
x 6= nil ∨ (iff x x) = (if x nil t) Instantiation (*2a)
x 6= nil ∨ (if x y z) = z Axiom if when nil
x 6= nil ∨ (if x nil t) = t Instantiation
x 6= nil ∨ (iff x x) = t Dj. trans. = *2a (*2)
(iff x x) = t ∨ (iff x x) = t Cut *1, *2
(iff x x) = t Contraction

Formal Theorem A-15. Symmetry of iff

(iff x y) = (iff y x)

485

Proof.

y = nil ∨ (iff x y) = (if x t nil) Th. iff rhs true
x = nil ∨ (iff y x) = (if y t nil) Instantiation
x = nil ∨ (if y t nil) = (iff y x) Dj. commute =
x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
x = nil ∨ (iff x y) = (iff y x) Dj. trans. = (*1)
y 6= nil ∨ (iff x y) = (if x nil t) Th. iff rhs false
x 6= nil ∨ (iff y x) = (if y nil t) Instantiation
x 6= nil ∨ (if y nil t) = (iff y x) Dj. commute =
x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
x 6= nil ∨ (iff x y) = (iff y x) Dj. trans. = (*2)
(iff x y) = (iff y x)

∨ (iff x y) = (iff y x)
Cut *1, *2

(iff x y) = (iff y x) Contraction

Derived Rule A-7. Iff t from not nil

(iff a b) 6= nil
(iff a b) = t

Derivation. (7)

(iff x y) = nil ∨ (iff x y) = t Th. iff nil or t
(iff a b) = nil ∨ (iff a b) = t Instantiation
(iff a b) 6= nil Given
(iff a b) = t Modus ponens 2

Derived Rule A-8. Disjoined iff t from not nil

P ∨ (iff a b) 6= nil
P ∨ (iff a b) = t

Derivation. (17)

(iff x y) = nil ∨ (iff x y) = t Th. iff nil or t
(iff a b) = nil ∨ (iff a b) = t Instantiation
P ∨ (iff a b) = nil ∨ (iff a b) = t Expansion
P ∨ (iff a b) 6= nil Given
P ∨ (iff a b) = t Dj. mp2

486

Derived Rule A-9. Iff reflexivity

(iff a a) = t

Derivation. (2)

(iff x x) = t Th. refl. iff
(iff a a) = t Instantiation

Derived Rule A-10. Commute iff

(iff a b) = t
(iff b a) = t

Derivation. (14)

(iff x y) = (iff y x) Th. symmetry of iff
(iff b a) = (iff a b) Instantiation
(iff a b) = t Given
(iff b a) = t Trans. =

Derived Rule A-11. Disjoined commute iff

P ∨ (iff a b) = t
P ∨ (iff b a) = t

Derivation. (34)

(iff x y) = (iff y x) Th. symmetry of iff
(iff b a) = (iff a b) Instantiation
P ∨ (iff b a) = (iff a b) Expansion
P ∨ (iff a b) = t Given
P ∨ (iff b a) = t Dj. trans. =

Formal Theorem A-16. Iff congruence lemma

x = nil ∨ y = nil ∨ (if x a b) = (if y a b)

487

Proof.

x = nil ∨ (if x y z) = z Ax. if when nnil
x = nil ∨ (if x a b) = b Instantiation
(x = nil ∨ y = nil) ∨ (if x a b) = b Multi assoc exp. (*1)
y = nil ∨ (if y a b) = b Instantiation
(x = nil ∨ y = nil) ∨ (if y a b) = b Multi assoc exp.
(x = nil ∨ y = nil) ∨ b = (if y a b) Dj. commute =
(x = nil ∨ y = nil) ∨ (if x a b) = (if y a b) Dj. trans. = *1
x = nil ∨ y = nil ∨ (if x a b) = (if y a b) Right assoc.

Formal Theorem A-17. Iff congruence lemma 2

x 6= nil ∨ y 6= nil ∨ (if x a b) = (if y a b)

Proof.

x 6= nil ∨ (if x y z) = y Axiom if when nil
x 6= nil ∨ (if x a b) = b Instantiation
(x 6= nil ∨ y 6= nil) ∨ (if x a b) = b Multi assoc exp. (*1)
y 6= nil ∨ (if y a b) = b Instantiation
(x 6= nil ∨ y 6= nil) ∨ (if y a b) = b Multi assoc exp.
(x 6= nil ∨ y 6= nil) ∨ b = (if y a b) Dj. commute =
(x 6= nil ∨ y 6= nil) ∨ (if x a b) = (if y a b) Dj. trans. = *1
x 6= nil ∨ y 6= nil ∨ (if x a b) 6= (if y a b) Right assoc.

Formal Theorem A-18. Iff congruent if 1

(iff x y) = nil ∨ (if x a b) = (if y a b)

Proof.

x = nil ∨ y = nil ∨ (if x a b) = (if y a b) Th. iff congruence lm.
x 6= nil ∨ y = nil ∨ (iff x y) = nil Th. iff false true
(y = nil ∨ (if x a b) = (if y a b))

∨ y = nil ∨ (iff x y) = nil
Cut

y = nil ∨ (if x a b) = (if y a b)
∨ y = nil ∨ (iff x y) = nil

Right assoc.

y = nil ∨ (iff x y) = nil
∨ (if x a b) = (if y a b)

Generic subset (*1)

488

x = nil ∨ y 6= nil ∨ (iff x y) = nil Th. iff true false
x 6= nil ∨ y 6= nil ∨ (if x a b) = (if y a b) Th. iff congruence lm. 2
(y 6= nil ∨ (iff x y) = nil)

∨ y 6= nil ∨ (if x a b) = (if y a b)
Cut

y 6= nil ∨ (iff x y) = nil
∨ y 6= nil ∨ (if x a b) = (if y a b)

Right assoc.

y 6= nil ∨ (iff x y) = nil
∨ (if x a b) = (if y a b)

Generic subset

((iff x y) = nil ∨ (if x a b) = (if y a b))
∨ (iff x y) = nil
∨ (if x a b) = (if y a b)

Cut *1

(iff x y) = nil ∨ (if x a b) = (if y a b) Contraction

Formal Theorem A-19. Iff congruent iff 2

(iff x y) = nil ∨ (iff z x) = (iff z y)

Proof.

x = nil ∨ (iff x y) = (if y t nil) Th. iff lhs true
z = nil ∨ (iff z x) = (if x t nil) Instantiation (*1a)
z = nil ∨ (iff z y) = (if y t nil) Instantiation
z = nil ∨ (if y t nil) = (iff z y) Dj. commute = (*1b)
(iff x y) = nil ∨ (if x a b) = (if y a b) Th. iff congruent if 1
(iff x y) = nil

∨ (if x nil t) = (if y t nil)
Instantiation (*1c)

z = nil ∨ (iff x y) = nil
∨ (iff z x) = (if x t nil)

Multi assoc exp. *1a

z = nil ∨ (iff x y) = nil
∨ (if x nil t) = (if y t nil)

Multi assoc exp. *1c

z = nil ∨ (iff x y) = nil
∨ (iff z x) = (if y t nil)

Dj. trans. =

z = nil ∨ (iff x y) = nil
∨ (if y t nil) = (iff z y)

Multi assoc exp. *1b

z = nil ∨ (iff x y) = nil
∨ (iff z x) = (iff z y)

Dj. trans. =

z = nil ∨ (iff x y) = nil
∨ (iff z x) = (iff z y)

Right assoc. (*1)

x 6= nil ∨ (iff x y) = (if y nil t) Th. iff lhs false
z 6= nil ∨ (iff z x) = (if x nil t) Instantiation (*2a)
z 6= nil ∨ (iff z y) = (if y nil t) Instantiation
z 6= nil ∨ (if y nil t) = (iff z y) Dj. commute = (*2b)

489

(iff x y) = nil ∨ (if x a b) = (if y a b) Th. iff congruent if 1
(iff x y) = nil

∨ (if x nil t) = (if y nil t)
Instantiation (*2c)

(z 6= nil ∨ (iff x y) = nil)
∨ (iff z x) = (if x nil t)

Multi assoc exp. *2a

(z 6= nil ∨ (iff x y) = nil)
∨ (if x nil t) = (if y nil t)

Multi assoc exp. *2c

(z 6= nil ∨ (iff x y) = nil)
∨ (iff z x) = (if y nil t)

Dj. trans. =

(z 6= nil ∨ (iff x y) = nil)
∨ (if y nil t) = (iff z y)

Multi assoc exp. *2b

(z 6= nil ∨ (iff x y) = nil)
∨ (iff z x) = (iff z y)

Dj. trans. =

z 6= nil ∨ (iff x y) = nil
∨ (iff z x) = (iff z y)

Right assoc. (*2)

((iff x y) = nil ∨ (iff z x) = (iff z y))
∨ (iff x y) = nil
∨ (iff z x) = (iff z y)

Cut *1, *2

(iff x y) = nil ∨ (iff z x) = (iff z y) Contraction

Formal Theorem A-20. Iff congruent iff 1

(iff x y) = nil ∨ (iff x z) = (iff y z)

Proof.

(iff x y) = (iff y x) Th. symmetry of iff
(iff z y) = (iff y z) Instantiation
(iff z x) = (iff x z) Instantiation
(iff x y) = nil ∨ (iff z y) = (iff y z) Expansion (*1a)
(iff x y) = nil ∨ (iff z x) = (iff x z) Expansion (*1b)
(iff x y) = nil ∨ (iff z x) = (iff z y) Th. iff congruent iff 2
(iff x y) = nil ∨ (iff z x) = (iff y z) Dj. trans. = *1a
(iff x y) = nil ∨ (iff y z) = (iff z x) Dj. commute =
(iff x y) = nil ∨ (iff y z) = (iff x z) Dj. trans. = *1b
(iff x y) = nil ∨ (iff x z) = (iff y z) Dj. commute =

Formal Theorem A-21. Iff of if x t nil

(iff (if x t nil) x) = t

490

Proof.

x = nil ∨ (if x y z) = y Ax. if when nnil
x = nil ∨ (if x t nil) = t Instantiation (*1a)
x = x Reflexivity
x = nil ∨ x = x Expansion (*1b)
x = nil ∨ (iff (if x t nil) x) = (iff t x) Dj. = args *1ab (*1c)
(iff x y) = (iff y x) Th. symmetry of iff
(iff t x) = (iff x t) Instantiation
x = nil ∨ (iff t x) = (iff x t) Expansion
x = nil ∨ (iff (if x t nil) x) = (iff x t) Dj. trans. = *1c
x = nil ∨ (iff x t) = t Th. iff t, nnil
x = nil ∨ (iff (if x t nil) x) = t Dj. trans. = (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
x 6= nil ∨ (if x t nil) = nil Instantiation (*2a)
x = x Reflexivity
x 6= nil ∨ x = x Expansion (*2b)
x 6= nil ∨ (iff (if x t nil) x) = (iff nil x) Dj. = args *2a, *2b (*2c)
(iff x y) = (iff y x) Th. symmetry of iff
(iff nil x) = (iff x nil) Instantiation
x 6= nil ∨ (iff nil x) = (iff x nil) Expansion
x 6= nil ∨ (iff (if x t nil) x) = (iff x nil) Dj. trans. = *2c
x 6= nil ∨ (iff x nil) = t Th. iff nil, nil
x 6= nil ∨ (iff (if x t nil) x) = t Dj. trans. = (*2)
(iff (if x t nil) x) = t

∨ (iff (if x t nil) x) = t
Cut *1, *2

(iff (if x t nil) x) = t Contraction

Formal Theorem A-22. Transitivity of iff

(iff x y) 6= t ∨ (iff y z) 6= t ∨ (iff x z) = t

Proof.

(iff x y) = nil ∨ (iff x z) = (iff y z) Th. iff congruent iff 1
(iff x z) = (iff y z) ∨ (iff x y) = nil Commute or
(iff x z) = (iff y z) ∨ (iff x y) 6= t Dj. not t from nil
(iff x y) 6= t ∨ (iff x z) = (iff y z) Commute or
((iff x y) 6= t ∨ (iff y z) 6= t)

∨ (iff x z) = (iff y z)
Multi assoc exp. (*1)

(iff y z) 6= t ∨ (iff y z) = t Prop. schema

491

((iff x y) 6= t ∨ (iff y z) 6= t)
∨ (iff y z) = t

Multi assoc exp.

((iff x y) 6= t ∨ (iff y z) 6= t)
∨ (iff x z) = t

Dj. trans. = *1

(iff x y) 6= t ∨ (iff y z) 6= t ∨ (iff x z) = t Right assoc.

Derived Rule A-12. Transitivity of iff
(iff a b) = t
(iff b c) = t
(iff a c) = t

Derivation. (12)

(iff x y) 6= t ∨ (iff y z) 6= t ∨ (iff x z) = t Th. trans. iff
(iff a b) 6= t ∨ (iff b c) 6= t ∨ (iff a c) = t Instantiation (*1)
(iff a b) = t Given
(iff b c) 6= t ∨ (iff a c) = t Modus ponens *1 (*2)
(iff b c) = t Given
(iff a c) = t Modus ponens *2

Derived Rule A-13. Disjoined transitivity of iff
P ∨ (iff a b) = t
P ∨ (iff b c) = t
P ∨ (iff a c) = t

Derivation. (31)

(iff x y) 6= t ∨ (iff y z) 6= t ∨ (iff x z) = t Th. trans. iff
(iff a b) 6= t ∨ (iff b c) 6= t ∨ (iff a c) = t Instantiation
P ∨ (iff a b) 6= t

∨ (iff b c) 6= t ∨ (iff a c) = t
Expansion

P ∨ (iff a b) = t Given
P ∨ (iff b c) 6= t ∨ (iff a c) = t Dj. modus ponens
P ∨ (iff b c) = t Given
P ∨ (iff a c) 6= t Dj. modus ponens

492

Formal Theorem A-23. Iff from =

x 6= y ∨ (iff x y) = t

Proof.

x = x Reflexivity
x 6= y ∨ x = x Expansion (*1a)
x 6= y ∨ x = y Prop. schema
x 6= y ∨ y = x Dj. commute = (*1b)
x 6= y ∨ (iff x y) = (iff x x) Dj. = args *1ab (*1)
(iff x x) = t Th. refl. iff
x 6= y ∨ (iff x x) = t Expansion
x 6= y ∨ (iff x y) = t Dj. trans. = *1

Derived Rule A-14. Iff from =
a = b
(iff a b) = t

Derivation. (7)

x 6= y ∨ (iff x y) = t Th. iff from =
a 6= b ∨ (iff a b) = t Instantiation
a = b Given
(iff a b) = t Modus ponens

Derived Rule A-15. Disjoined iff from =
P ∨ a = b
P ∨ (iff a b) = t

Derivation. (17)

x 6= y ∨ (iff x y) = t Th. iff from =
a 6= b ∨ (iff a b) = t Instantiation
P ∨ a 6= b ∨ (iff a b) = t Expansion
P ∨ a = b Given
P ∨ (iff a b) = t Dj. modus ponens

493

Formal Theorem A-24. Iff from equal

(equal x y) 6= t ∨ (iff x y) = t

Proof.

x = y ∨ (equal x y) = nil Ax. eq. when diff
x = y ∨ (equal x y) 6= t Dj. not t from nil
x 6= y ∨ (iff x y) = t Th. iff from =
(equal x y) 6= t ∨ (iff x y) = t Cut

Derived Rule A-16. Iff from equal

(equal a b) = t
(iff a b) = t

Derivation. (7)

(equal x y) 6= t ∨ (iff x y) = t Th. iff from equal
(equal a b) 6= t ∨ (iff a b) = t Instantiation
(equal a b) = t Given
(iff a b) = t Modus ponens

Derived Rule A-17. Disjoined iff from equal

P ∨ (equal a b) = t
P ∨ (iff a b) = t

Derivation. (17)

(equal x y) 6= t ∨ (iff x y) = t Th. iff from equal
(equal a b) 6= t ∨ (iff a b) = t Instantiation
P ∨ (equal a b) 6= t ∨ (iff a b) = t Expansion
P ∨ (equal a b) = t Given
P ∨ (iff a b) = t Dj. modus ponens

494

Derived Rule A-18. Negative lit from 6= nil

a 6= nil
(not a) = nil

Derivation. (7)

x = nil ∨ (not x) = nil Th. not when nnil
a = nil ∨ (not a) = nil Instantiation
a 6= nil Given
(not a) = nil Modus ponens 2

Derived Rule A-19. Disjoined negative lit from = nil

P ∨ a = nil
P ∨ (not a) 6= nil

Derivation. (34)

x 6= nil ∨ (not x) = t Th. not when nil
x 6= nil ∨ (not x) 6= nil Dj. not nil from t
a 6= nil ∨ (not a) 6= nil Instantiation
P ∨ a 6= nil ∨ (not a) 6= nil Expansion
P ∨ a = nil Given
P ∨ (not a) 6= nil Dj. modus ponens

Derived Rule A-20. Substitute iff into literal
b 6= nil
(iff a b) = t
a 6= nil

Derivation. (35)

b 6= nil Given
(iff b t) = t Iff t from 6= nil
(iff a b) = t Given
(iff a t) = t Transitivity of iff
(iff a t) 6= nil Not nil from t
a 6= nil 6= nil from iff t

495

Derived Rule A-21. Disjoined substitute iff into literal
P ∨ b 6= nil
P ∨ (iff a b) = t
P ∨ a 6= nil

Derivation. (84)

P ∨ b 6= nil Given
P ∨ (iff b t) = t Dj. iff t fr. 6= nil
P ∨ (iff a b) = t Given
P ∨ (iff a t) = t Dj. trans. iff
P ∨ (iff a t) 6= nil Dj. not nil from t
P ∨ a 6= nil Dj. 6= nil fr. iff t

496

Appendix B

Derivations for Clause Splitting

In this appendix, we present the details behind the formal theorems and de-

rived rules which were only summarized in Section 7.5. To make some derivations

more efficient, we begin by introducing a few optimized rules for certain kinds of

propositional manipulation.

Derived Rule B-1. Aux split twiddle lemma 1

(A ∨ C) ∨ B ∨ C
((B ∨ C) ∨ A ∨ B ∨ C) ∨ A

Derivation. (10)

(A ∨ C) ∨ B ∨ C Given
(B ∨ C) ∨ A ∨ C Commute or
A ∨ (B ∨ C) ∨ A ∨ C Expansion
(A ∨ B ∨ C) ∨ A ∨ C Associativity
((A ∨ B ∨ C) ∨ A) ∨ C Associativity
C ∨ (A ∨ B ∨ C) ∨ A Commute or
B ∨ C ∨ (A ∨ B ∨ C) ∨ A Expansion
(B ∨ C) ∨ (A ∨ B ∨ C) ∨ A Associativity
((B ∨ C) ∨ A ∨ B ∨ C) ∨ A Associativity

Derived Rule B-2. Aux split twiddle

(A ∨ C) ∨ B ∨ C
A ∨ B ∨ C

Derivation. (14)

(A ∨ C) ∨ B ∨ C Given

497

((B ∨ C) ∨ A ∨ B ∨ C) ∨ A Aux split twiddle lm. 1
A ∨ (B ∨ C) ∨ A ∨ B ∨ C Commute or
(A ∨ B ∨ C) ∨ A ∨ B ∨ C Associativity
A ∨ B ∨ C Contraction

Derived Rule B-3. Aux split twiddle2 lemma 1a

Q ∨ A ∨ C
A ∨ B ∨ C ∨ P ∨Q

Derivation. (18)

Q ∨ A ∨ C Given
P ∨Q ∨ A ∨ C Expansion
(P ∨Q) ∨ A ∨ C Associativity
(A ∨ C) ∨ P ∨Q Commute or
A ∨ C ∨ P ∨Q Right assoc.
A ∨ B ∨ C ∨ P ∨Q Dj. left expansion

Derived Rule B-4. Aux split twiddle2 lemma 1

Q ∨ A ∨ C
((P ∨Q) ∨ A ∨ B) ∨ C

Derivation. (23)

Q ∨ A ∨ C Given
A ∨ B ∨ C ∨ P ∨Q Aux split twiddle2 lm. 1a
(A ∨ B) ∨ C ∨ P ∨Q Associativity
((A ∨ B) ∨ C) ∨ P ∨Q Associativity
(P ∨Q) ∨ (A ∨ B) ∨ C Commute or
((P ∨Q) ∨ A ∨ B) ∨ C Associativity

Derived Rule B-5. Aux split twiddle2 lemma 2a

C ∨ B ∨ P
A ∨ B ∨ (P ∨Q) ∨ C

Derivation. (10)

498

C ∨ B ∨ P Given
(C ∨ B) ∨ P Associativity
Q ∨ (C ∨ B) ∨ P Expansion
(Q ∨ C ∨ B) ∨ P Associativity
P ∨Q ∨ C ∨ B Commute or
(P ∨Q) ∨ C ∨ B Associativity
((P ∨Q) ∨ C) ∨ B Associativity
B ∨ (P ∨Q) ∨ C Commute or
A ∨ B ∨ (P ∨Q) ∨ C Expansion

Derived Rule B-6. Aux split twiddle2 lemma 2

C ∨ B ∨ P
C ∨ (P ∨Q) ∨ A ∨ B

Derivation. (34)

C ∨ B ∨ P Given
A ∨ B ∨ (P ∨Q) ∨ C Aux split twiddle2 lm. 2a
(A ∨ B) ∨ (P ∨Q) ∨ C Associativity
((A ∨ B) ∨ P ∨Q) ∨ C Associativity
C ∨ (A ∨ B) ∨ P ∨Q Commute or
C ∨ (P ∨Q) ∨ A ∨ B Dj. commute or

Derived Rule B-7. Aux split twiddle2

(A ∨ B ∨ P) ∨Q
(P ∨Q) ∨ A ∨ B

Derivation. (60)

(A ∨ B ∨ P) ∨Q Given
Q ∨ A ∨ B ∨ P Commute or
((P ∨Q) ∨ A ∨ B) ∨ B ∨ P Aux split twiddle2 lm. 1
((P ∨Q) ∨ A ∨ B) ∨ (P ∨Q) ∨ A ∨ B Aux split twiddle2 lm. 2
(P ∨Q) ∨ A ∨ B Contraction

We can now introduce the derivations used throughout the proof of cs-aux.

499

The rules for Line 2 are straightforward.

Derived Rule B-8. Aux split double negate lemma1
(b 6= nil ∨ P) ∨Q
(iff a b) = t
(a 6= nil ∨ P) ∨Q

Derivation. (98)

(b 6= nil ∨ P) ∨Q Given
b 6= nil ∨ P ∨Q Right assoc.
(P ∨Q) ∨ b 6= nil Commute or (*1)
(iff a b) = t Given
(P ∨Q) ∨ (iff a b) = t Expansion
(P ∨Q) ∨ a 6= nil Dj. sub. iff into literal *1
a 6= nil ∨ P ∨Q Commute or
(a 6= nil ∨ P) ∨Q Associativity

Derived Rule B-9. Aux split double negate lemma2
b 6= nil ∨ P
(iff a b) = t
a 6= nil ∨ P

Derivation. (89)

b 6= nil ∨ P Given
P ∨ b 6= nil Commute or (*1)
(iff a b) = t Given
P ∨ (iff a b) = t Expansion
P ∨ a 6= nil Dj. sub. iff into literal *1
a 6= nil ∨ P Commute or

For line 3, we begin by introducing a theorem which performs for the main

part of the derivation, and by developing the usual rules to allow us to instantiate

this theorem.

500

Formal Theorem B-1. Aux split negative

¬((not x) 6= nil ∨ (not y) 6= nil)
∨ ¬(x 6= nil ∨ (not z) 6= nil) ∨ (not (if x y z)) 6= nil

Proof.

In the derivation below, we let P be ((not x) 6= nil ∨ (not y) 6= nil), and

let Q be (x 6= nil ∨ (not z) 6= nil).

x = nil ∨ (if x y z) = y Ax. if when nnil
¬P ∨ x = nil ∨ (if x y z) = y Expansion
(¬P ∨ x = nil) ∨ (if x y z) = y Associativity (*1a)
¬P ∨ (not x) 6= nil ∨ (not y) 6= nil Prop. schema
(¬P ∨ (not x) 6= nil) ∨ (not y) 6= nil Associativity
(¬P ∨ (not x) 6= nil) ∨ y = nil Dj. = nil fr. neg. lit
¬P ∨ (not x) 6= nil ∨ y = nil Right assoc.
¬P ∨ y = nil ∨ (not x) 6= nil Dj. commute or
(¬P ∨ y = nil) ∨ (not x) 6= nil Associativity
(¬P ∨ y = nil) ∨ x = nil Dj. = nil fr. neg. lit
¬P ∨ y = nil ∨ x = nil Right assoc.
¬P ∨ x = nil ∨ y = nil Dj. commute or
(¬P ∨ x = nil) ∨ y = nil Associativity
(¬P ∨ x = nil) ∨ (if x y z) = nil Dj. trans. = *1a
(¬P ∨ x = nil) ∨ (not (if x y z)) 6= nil Dj. neg. lit fr. = nil
(not (if x y z)) 6= nil ∨ ¬P ∨ x = nil Commute or
((not (if x y z)) 6= nil ∨ ¬P) ∨ x = nil Associativity
x = nil ∨ (not (if x y z)) 6= nil ∨ ¬P Commute or
x = nil ∨ ¬P ∨ (not (if x y z)) 6= nil Dj. commute or (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
¬Q ∨ x 6= nil ∨ (if x y z) = z Expansion
(¬Q ∨ x 6= nil) ∨ (if x y z) = z Associativity (*2a)
¬Q ∨ x 6= nil ∨ (not z) 6= nil Prop. schema
(¬Q ∨ x 6= nil) ∨ (not z) 6= nil Associativity
(¬Q ∨ x 6= nil) ∨ z = nil Dj. = nil fr. neg. lit
(¬Q ∨ x 6= nil) ∨ (if x y z) = nil Dj. trans. = *2a
(¬Q ∨ x 6= nil) ∨ (not (if x y z)) 6= nil Dj. neg. lit fr. = nil
(not (if x y z)) 6= nil ∨ ¬Q ∨ x 6= nil Commute or
(not (if x y z)) 6= nil ∨ x 6= nil ∨ ¬Q Dj. commute or
(x 6= nil ∨ ¬Q) ∨ (not (if x y z)) 6= nil Commute or
x 6= nil ∨ ¬Q ∨ (not (if x y z)) 6= nil Right assoc. (*2)

501

(¬P ∨ (not (if x y z)) 6= nil)
∨ ¬Q ∨ (not (if x y z)) 6= nil

Cut *1, *2

¬P ∨ ¬Q ∨ (not (if x y z)) 6= nil Aux split twiddle

Derived Rule B-10. Aux split negative
(not a) 6= nil ∨ (not b) 6= nil
a 6= nil ∨ (not c) 6= nil
(not (if a b c)) 6= nil

Derivation. (12)

¬((not x) 6= nil ∨ (not y) 6= nil)
∨ ¬(x 6= nil ∨ (not z) 6= nil)
∨ (not (if x y z)) 6= nil

Th. aux split neg.

¬((not a) 6= nil ∨ (not b) 6= nil)
∨ ¬(a 6= nil ∨ (not c) 6= nil)
∨ (not (if a b c)) 6= nil

Instantiation

(not a) 6= nil ∨ (not b) 6= nil Given
¬(a 6= nil ∨ (not c) 6= nil)

∨ (not (if a b c)) 6= nil
Modus ponens

a 6= nil ∨ (not c) 6= nil Given
(not (if a b c)) 6= nil Modus ponens

Derived Rule B-11. Disjoined aux split negative
P ∨ (not a) 6= nil ∨ (not b) 6= nil
P ∨ a 6= nil ∨ (not c) 6= nil
P ∨ (not (if a b c)) 6= nil

Derivation. (31)

¬((not x) 6= nil ∨ (not y) 6= nil)
∨ ¬(x 6= nil ∨ (not z) 6= nil)
∨ (not (if x y z)) 6= nil

Th. aux split neg.

¬((not a) 6= nil ∨ (not b) 6= nil)
∨ ¬(a 6= nil ∨ (not c) 6= nil)
∨ (not (if a b c)) 6= nil

Instantiation

P ∨ ¬((not a) 6= nil ∨ (not b) 6= nil)
∨ ¬(a 6= nil ∨ (not c) 6= nil)
∨ (not (if a b c)) 6= nil

Expansion

502

P ∨ (not a) 6= nil ∨ (not b) 6= nil Given
P ∨ ¬(a 6= nil ∨ (not c) 6= nil)

∨ (not (if a b c)) 6= nil
Dj. modus ponens

P ∨ a 6= nil ∨ (not c) 6= nil Given
P ∨ (not (if a b c)) 6= nil Dj. modus ponens

We are now ready for the main rules that we use in the proof of Line 3.

Derived Rule B-12. Aux split negative 1 lemma 1
((not a) 6= nil ∨ (not b) 6= nil ∨ P) ∨Q
(a 6= nil ∨ (not c) 6= nil ∨ P) ∨Q
(P ∨Q) ∨ (not (if a b c)) 6= nil

Derivation. (151)

((not a) 6= nil ∨ (not b) 6= nil ∨ P) ∨Q Given
(P ∨Q) ∨ (not a) 6= nil ∨ (not b) 6= nil Aux split twiddle2 (*1)
(a 6= nil ∨ (not c) 6= nil ∨ P) ∨Q Given
(P ∨Q) ∨ a 6= nil ∨ (not c) 6= nil Aux split twiddle2
(P ∨Q) ∨ (not (if a b c)) 6= nil Dj. aux split neg. *1

Derived Rule B-13. Aux split negative 1 lemma 2
(P ∨Q) ∨ (not a) 6= nil
t1 = (not a)
(t1 6= nil ∨ P) ∨Q

Derivation. (35)

(P ∨Q) ∨ (not a) 6= nil Given (*1)
t1 = (not a) Given
(P ∨Q) ∨ t1 = (not a) Expansion
(P ∨Q) ∨ t1 6= nil Dj. sub. into 6= *1
t1 6= nil ∨ P ∨Q Commute or
(t1 6= nil ∨ P) ∨Q Associativity

503

Derived Rule B-14. Aux split negative 1
((not a) 6= nil ∨ (not b) 6= nil ∨ P) ∨Q
(a 6= nil ∨ (not c) 6= nil ∨ P) ∨Q
t1 = (not (if a b c))
(t1 6= nil ∨ P) ∨Q

Derivation. (186)

((not a) 6= nil ∨ (not b) 6= nil ∨ P) ∨Q Given
(a 6= nil ∨ (not c) 6= nil ∨ P) ∨Q Given
(P ∨Q) ∨ (not (if a b c)) 6= nil Aux split neg. 1 lm. 1
t1 = (not (if a b c)) Given
(t1 6= nil ∨ P) ∨Q Aux split neg. 1 lm. 2

Derived Rule B-15. Aux split negative 2 lemma 1
((not a) 6= nil ∨ (not b) 6= nil) ∨ P
(a 6= nil ∨ (not c) 6= nil) ∨ P
P ∨ (not (if a b c)) 6= nil

Derivation. (35)

((not a) 6= nil ∨ (not b) 6= nil) ∨ P Given
P ∨ (not a) 6= nil ∨ (not b) 6= nil Commute or (*1)
(a 6= nil ∨ (not c) 6= nil) ∨ P Given
P ∨ a 6= nil ∨ (not c) 6= nil Commute or (*2)
P ∨ (not (if a b c)) 6= nil Dj. aux split neg. *1, *2

Derived Rule B-16. Aux split negative 2 lemma 2
t1 = (not a)
P ∨ (not a) 6= nil
t1 6= nil ∨ P

Derivation. (34)

t1 = (not a) Given
P ∨ t1 = (not a) Expansion
P ∨ (not a) 6= nil Given
P ∨ t1 6= nil Dj. sub. into 6=
t1 6= nil ∨ P Commute or

504

Derived Rule B-17. Aux split negative 2
((not a) 6= nil ∨ (not b) 6= nil) ∨ P
(a 6= nil ∨ (not c) 6= nil) ∨ P
t1 = (not (if a b c))
t1 6= nil ∨ P

Derivation. (69)

((not a) 6= nil ∨ (not b) 6= nil) ∨ P Given
(a 6= nil ∨ (not c) 6= nil) ∨ P Given
P ∨ (not (if a b c)) 6= nil Aux split neg. 2 lm. 1
t1 = (not (if a b c)) Given
t1 6= nil ∨ P Aux split neg. 2 lm. 2

Our work for line 4 is similar. We begin with a theorem that does the main

part of the derivation. We can then instantiate that theorem and manipulate the

result as needed.

Formal Theorem B-2. Aux split positive

¬((not x) 6= nil ∨ y 6= nil)
∨ ¬(x 6= nil ∨ z 6= nil) ∨ (if x y z) 6= nil

Proof.

In the derivation below, we let P be ((not x) 6= nil∨ y 6= nil) and let Q be

(x 6= nil ∨ z 6= nil).

x = nil ∨ (if x y z) = y Ax. if when nnil
¬P ∨ x = nil ∨ (if x y z) = y Expansion
(¬P ∨ x = nil) ∨ (if x y z) = y Associativity (*1a)
¬P ∨ (not x) 6= nil ∨ y 6= nil Prop. schema
¬P ∨ y 6= nil ∨ (not x) 6= nil Dj. commute or
(¬P ∨ y 6= nil) ∨ (not x) 6= nil Associativity
(¬P ∨ y 6= nil) ∨ x = nil Dj. = nil fr. neg. lit
¬P ∨ y 6= nil ∨ x = nil Right assoc.
¬P ∨ x = nil ∨ y 6= nil Dj. commute or
(¬P ∨ x = nil) ∨ y 6= nil Associativity
(¬P ∨ x = nil) ∨ (if x y z) 6= nil Dj. sub. into 6= *1a

505

(if x y z) 6= nil ∨ ¬P ∨ x = nil Commute or
(if x y z) 6= nil ∨ x = nil ∨ ¬P Dj. commute or
(x = nil ∨ ¬P) ∨ (if x y z) 6= nil Commute or
x = nil ∨ ¬P ∨ (if x y z) 6= nil Right assoc. (*1)
x 6= nil ∨ (if x y z) = z Axiom if when nil
¬Q ∨ x 6= nil ∨ (if x y z) = z Expansion
(¬Q ∨ x 6= nil) ∨ (if x y z) = z Associativity (*2a)
¬Q ∨ x 6= nil ∨ z 6= nil Prop. schema
(¬Q ∨ x 6= nil) ∨ z 6= nil Associativity
(¬Q ∨ x 6= nil) ∨ (if x y z) 6= nil Dj. sub. into 6= *2a
(if x y z) 6= nil ∨ ¬Q ∨ x 6= nil Commute or
(if x y z) 6= nil ∨ x 6= nil ∨ ¬Q Dj. commute or
(x 6= nil ∨ ¬Q) ∨ (if x y z) 6= nil Commute or
x 6= nil ∨ ¬Q ∨ (if x y z) 6= nil Right assoc. (*2)
(¬P ∨ (if x y z) 6= nil)

∨ ¬Q ∨ (if x y z) 6= nil
Cut *1, *2

¬P ∨ ¬Q ∨ (if x y z) 6= nil Aux split twiddle

Derived Rule B-18. Aux split positive
(not a) 6= nil ∨ b 6= nil
a 6= nil ∨ c 6= nil
(if a b c) 6= nil

Derivation. (12)

¬((not x) 6= nil ∨ y 6= nil)
∨ ¬(x 6= nil ∨ z 6= nil) ∨ (if x y z) 6= nil

Th. aux split positive

¬((not a) 6= nil ∨ b 6= nil)
∨ ¬(a 6= nil ∨ c 6= nil) ∨ (if a b c) 6= nil

Instantiation

(not a) 6= nil ∨ b 6= nil Given
¬(a 6= nil ∨ c 6= nil) ∨ (if a b c) 6= nil Modus ponens
a 6= nil ∨ c 6= nil Given
(if a b c) 6= nil Modus ponens

Derived Rule B-19. Disjoined aux split positive
P ∨ (not a) 6= nil ∨ b 6= nil
P ∨ a 6= nil ∨ c 6= nil
P ∨ (if a b c) 6= nil

506

Derivation. (31)

¬((not x) 6= nil ∨ y 6= nil)
∨ ¬(x 6= nil ∨ z 6= nil) ∨ (if x y z) 6= nil

Th. aux split positive

¬((not a) 6= nil ∨ b 6= nil)
∨ ¬(a 6= nil ∨ c 6= nil) ∨ (if a b c) 6= nil

Instantiation

P ∨ ¬((not a) 6= nil ∨ b 6= nil)
∨ ¬(a 6= nil ∨ c 6= nil) ∨ (if a b c) 6= nil

Expansion

P ∨ (not a) 6= nil ∨ b 6= nil Given
P ∨ ¬(a 6= nil ∨ c 6= nil) ∨ (if a b c) 6= nil Dj. modus ponens
P ∨ a 6= nil ∨ c 6= nil Given
P ∨ (if a b c) 6= nil Dj. modus ponens

Derived Rule B-20. Aux split positive 1
((not a) 6= nil ∨ b 6= nil ∨ P) ∨Q
(a 6= nil ∨ c 6= nil ∨ P) ∨Q
((if a b c) 6= nil ∨ P) ∨Q

Derivation. (154)

((not a) 6= nil ∨ b 6= nil ∨ P) ∨Q Given
(P ∨Q) ∨ (not a) 6= nil ∨ b 6= nil Aux split twiddle2 (*1)
(a 6= nil ∨ c 6= nil ∨ P) ∨Q Given
(P ∨Q) ∨ a 6= nil ∨ c 6= nil Aux split twiddle2 (*2)
(P ∨Q) ∨ (if a b c) 6= nil Dj. aux split positive *1, *2
(if a b c) 6= nil ∨ P ∨Q Commute or
((if a b c) 6= nil ∨ P) ∨Q Associativity

Derived Rule B-21. Aux split positive 2
((not a) 6= nil ∨ b 6= nil) ∨ P
(a 6= nil ∨ c 6= nil) ∨ P
(if a b c) 6= nil ∨ P

Derivation. (37)

((not a) 6= nil ∨ b 6= nil) ∨ P Given
P ∨ (not a) 6= nil ∨ b 6= nil Commute or (*1)
(a 6= nil ∨ c 6= nil) ∨ P Given
P ∨ a 6= nil ∨ c 6= nil Commute or (*2)

507

P ∨ (if a b c) 6= nil Dj. aux split positive *1, *2
(if a b c) 6= nil ∨ P Commute or

Finally, the rules used in the proof of line 5 are quite simple to derive.

Derived Rule B-22. Aux split default 1
P ∨ b 6= nil ∨Q
a = b
(a 6= nil ∨ P) ∨Q

Derivation. (59)

P ∨ b 6= nil ∨Q Given
(P ∨ b 6= nil) ∨Q Associativity
Q ∨ P ∨ b 6= nil Commute or
(Q ∨ P) ∨ b 6= nil Associativity (*1)
a = b Given
(Q ∨ P) ∨ a = b Expansion
(Q ∨ P) ∨ a 6= nil Dj. sub. into 6= *1
a 6= nil ∨Q ∨ P Commute or
a 6= nil ∨ P ∨Q Dj. commute or
(a 6= nil ∨ P) ∨Q Associativity

Derived Rule B-23. Aux split default 2
P ∨ b 6= nil
a = b
a 6= nil ∨ P

Derivation. (34)

a = b Given
P ∨ a = b Expansion
P ∨ b 6= nil Given
P ∨ a 6= nil Dj. sub. into 6=
a 6= nil ∨ P Commute or

508

Appendix C

Main Lemma for the Fast Rewriter

As mentioned in Section 9.10, our most complicated proof is to show that our

fast rewriter, fast-crw, produces the trace-image of our slow rewriter, crw, when

given the proper arguments. In this appendix we present the ACL2 defthm command

for the main lemma relating the two flag functions.

To make this lemma more concise, we use ACL2’s macro facility to introduce

abbreviations for calls of fast-crw and crw, which hide the numerous arguments

which are unchanged. These macros may be identified by the use of the $ symbol in

their names.

ACL2 Code
(defthm lemma-for-rw.trace-fast-image-of-rw.crewrite-core

(implies
(and (rw.assmsp assms)

(rw.controlp control)
(rw.cachep cache))

(cond
((equal flag ’term)
(implies
(and (logic.termp x)

(booleanp iffp))
(and

(equal (rw.cresult->alimitedp (rw.crewrite-core$ x))
(rw.cresult->alimitedp
(rw.fast-crewrite-core$ x
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

509

(equal (rw.cache-fast-image
(rw.cresult->cache (rw.crewrite-core$ x)))

(rw.cresult->cache
(rw.fast-crewrite-core$ x
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.trace-fast-image
(rw.cresult->data (rw.crewrite-core$ x)))

(rw.cresult->data
(rw.fast-crewrite-core$ x
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache)))))))

((equal flag ’list)
(implies
(and (logic.term-listp x)

(booleanp iffp))
(and

(equal (rw.cresult->alimitedp (rw.crewrite-core-list$ x))
(rw.cresult->alimitedp
(rw.fast-crewrite-core-list$ x
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.cresult->cache (rw.crewrite-core-list$ x)))

(rw.cresult->cache
(rw.fast-crewrite-core-list$ x
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.trace-list-fast-image
(rw.cresult->data (rw.crewrite-core-list$ x)))

(rw.cresult->data
(rw.fast-crewrite-core-list$ x
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache)))))))

510

((equal flag ’rule)
(implies
(and (logic.termp x)

(booleanp iffp)
(rw.rulep rule[s]))

(and

(equal (rw.cresult->alimitedp
(rw.crewrite-try-rule$ x rule[s]))

(rw.cresult->alimitedp
(rw.fast-crewrite-try-rule$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.cresult->cache (rw.crewrite-try-rule$ x rule[s])))

(rw.cresult->cache
(rw.fast-crewrite-try-rule$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(if (rw.cresult->data (rw.crewrite-try-rule$ x rule[s]))
(equal (rw.trace-fast-image

(rw.cresult->data
(rw.crewrite-try-rule$ x rule[s])))

(rw.cresult->data
(rw.fast-crewrite-try-rule$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

t)

(iff (rw.cresult->data (rw.crewrite-try-rule$ x rule[s]))
(rw.cresult->data
(rw.fast-crewrite-try-rule$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache)))))))

((equal flag ’rules)
(implies

511

(and (logic.termp x)
(booleanp iffp)
(rw.rule-listp rule[s]))

(and

(equal (rw.cresult->alimitedp
(rw.crewrite-try-rules$ x rule[s]))

(rw.cresult->alimitedp
(rw.fast-crewrite-try-rules$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.cresult->cache
(rw.crewrite-try-rules$ x rule[s])))

(rw.cresult->cache
(rw.fast-crewrite-try-rules$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(if (rw.cresult->data (rw.crewrite-try-rules$ x rule[s]))
(equal (rw.trace-fast-image

(rw.cresult->data
(rw.crewrite-try-rules$ x rule[s])))

(rw.cresult->data
(rw.fast-crewrite-try-rules$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

t)

(iff (rw.cresult->data (rw.crewrite-try-rules$ x rule[s]))
(rw.cresult->data
(rw.fast-crewrite-try-rules$ x rule[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache)))))))

((equal flag ’match)
(implies
(and (logic.termp x)

512

(booleanp iffp)
(rw.rulep rule[s])
(logic.sigmap sigma[s]))

(and

(equal (rw.cresult->alimitedp
(rw.crewrite-try-match$ x rule[s] sigma[s]))

(rw.cresult->alimitedp
(rw.fast-crewrite-try-match$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.cresult->cache
(rw.crewrite-try-match$ x rule[s] sigma[s])))

(rw.cresult->cache
(rw.fast-crewrite-try-match$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(if (rw.cresult->data
(rw.crewrite-try-match$ x rule[s] sigma[s]))
(equal
(rw.trace-fast-image
(rw.cresult->data
(rw.crewrite-try-match$ x rule[s] sigma[s])))

(rw.cresult->data
(rw.fast-crewrite-try-match$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

t)

(iff (rw.cresult->data
(rw.crewrite-try-match$ x rule[s] sigma[s]))

(rw.cresult->data
(rw.fast-crewrite-try-match$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache)))))))

513

((equal flag ’matches)
(implies
(and (logic.termp x)

(booleanp iffp)
(rw.rulep rule[s])
(logic.sigma-listp sigma[s]))

(and

(equal (rw.cresult->alimitedp
(rw.crewrite-try-matches$ x rule[s] sigma[s]))

(rw.cresult->alimitedp
(rw.fast-crewrite-try-matches$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.cresult->cache
(rw.crewrite-try-matches$ x rule[s] sigma[s])))

(rw.cresult->cache
(rw.fast-crewrite-try-matches$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(if (rw.cresult->data
(rw.crewrite-try-matches$ x rule[s] sigma[s]))
(equal (rw.trace-fast-image

(rw.cresult->data
(rw.crewrite-try-matches$ x rule[s] sigma[s])))

(rw.cresult->data
(rw.fast-crewrite-try-matches$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

t)

(iff (rw.cresult->data
(rw.crewrite-try-matches$ x rule[s] sigma[s]))

(rw.cresult->data
(rw.fast-crewrite-try-matches$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache)))))))

514

((equal flag ’hyp)
(implies
(and (rw.hypp x)

(rw.rulep rule[s])
(logic.sigmap sigma[s]))

(and

(equal (rw.cresult->alimitedp
(rw.crewrite-relieve-hyp$ x rule[s] sigma[s]))

(rw.cresult->alimitedp
(rw.fast-crewrite-relieve-hyp$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.cresult->cache
(rw.crewrite-relieve-hyp$ x rule[s] sigma[s])))

(rw.cresult->cache
(rw.fast-crewrite-relieve-hyp$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(if (rw.cresult->data
(rw.crewrite-relieve-hyp$ x rule[s] sigma[s]))
(equal (rw.trace-fast-image

(rw.cresult->data
(rw.crewrite-relieve-hyp$ x rule[s] sigma[s])))

(rw.cresult->data
(rw.fast-crewrite-relieve-hyp$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

t)

(iff (rw.cresult->data
(rw.crewrite-relieve-hyp$ x rule[s] sigma[s]))

(rw.cresult->data
(rw.fast-crewrite-relieve-hyp$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)

515

:cache (rw.cache-fast-image cache)))))))

(t
(implies
(and (rw.hyp-listp x)

(rw.rulep rule[s])
(logic.sigmap sigma[s]))

(and
(equal (rw.hypresult->alimitedp

(rw.crewrite-relieve-hyps$ x rule[s] sigma[s]))
(rw.hypresult->alimitedp
(rw.fast-crewrite-relieve-hyps$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(equal (rw.cache-fast-image
(rw.hypresult->cache
(rw.crewrite-relieve-hyps$ x rule[s] sigma[s])))

(rw.hypresult->cache
(rw.fast-crewrite-relieve-hyps$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

(if (rw.hypresult->successp
(rw.crewrite-relieve-hyps$ x rule[s] sigma[s]))
(equal (rw.trace-list-fast-image

(rw.hypresult->traces
(rw.crewrite-relieve-hyps$ x rule[s] sigma[s])))

(rw.hypresult->traces
(rw.fast-crewrite-relieve-hyps$ x rule[s] sigma[s]
:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))

t)

(equal (rw.hypresult->successp
(rw.crewrite-relieve-hyps$ x rule[s] sigma[s]))

(rw.hypresult->successp
(rw.fast-crewrite-relieve-hyps$ x rule[s] sigma[s]

516

:assms (rw.assms-fast-image assms)
:cache (rw.cache-fast-image cache))))))))))

517

Bibliography

[1] Algirdas A. Aviz̆ienis. The methodology of n–version programming. In M. R.

Lyu, editor, Software Fault Tolerance, pages 23–46. Wiley, 1995. 3

[2] Bruno Barras. Coq en Coq. Technical Report 3026, INRIA, October 1996. 466,

467

[3] Eli Barzilay. Quotation and reflection in Nuprl and Scheme. Technical Report

2001-1832, Cornell University, 2001. 20

[4] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher order

logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher Order

Logics (TPHOLS ’00), volume 1869 of LNCS, pages 38–52. Springer-Verlag,

2000. 462

[5] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In Types for

Proofs and Programs (Types ’00), volume 2277 of LNCS, pages 24–40. Springer-

Verlag, 2002. 469, 472

[6] Piergiorgio Bertoli and Paolo Traverso. Design verification of a safety-critical

embedded verifier. In Computer-Aided Reasoning: ACL2 Case Studies, chap-

ter 14. Kluwer Academic Publishers, 2000. 20

[7] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development: Coq’Art: The Calculus of Inductive Constructions. Texts in The-

oretical Computer Science. Springer-Verlag, 2004. 460, 472

518

[8] William R. Bevier. A Verified Operating System Kernel. PhD thesis, University

of Texas at Austin, December 1987. 20

[9] Richard J. Boulton. Boyer-Moore automation for the HOL system. In L. J. M.

Claesen and M. J. C. Gordon, editors, Higher Order Logic Theorem Proving

and its Applications (TPHOLS ’92), volume A-20 of IFIP Transactions, pages

133–142. Elsevier Science Publisher, September 1992. 464

[10] Richard John Boulton. Efficiency in a Fully-Expansive Theorem Prover. PhD

thesis, University of Cambridge, December 1993. 292

[11] R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic

theorem provers: A case study of linear arithmetic. In Machine Intelligence 11,

pages 83–124. Oxford University Press, 1988. 468

[12] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,

second edition, October 1997. 20, 161, 384

[13] R. S. Boyer and J Strother Moore. Metafunctions: proving them correct and

using them efficiently as new proof proceedures. In R. S. Boyer and J Strother

Moore, editors, The Correctness Problem in Computer Science, pages 103–184.

Academic Press, 1981. 467

[14] R. S. Boyer and Y. Yu. Automated correctness proofs of machine code programs

for a widely used microprocessor. Journal of the ACM, 43(1):166–192, 1996. 20

[15] Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J Strother Moore.

Functional instantiation in first-order logic. In V. Lifschitz, editor, Artificial

Intelligence and Mathematical Theory of Computation: Papers in Honor of John

McCarthy, pages 7–26. Academic Press, 1991. 4

519

[16] Robert S. Boyer and Warren A. Hunt, Jr. Function memoization and unique

object representation for ACL2 functions. In ACL2 ’06, August 2006. 6, 326,

414, 420, 421, 473

[17] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore

theorem prover and its interactive enhancement. Computers and Mathematics

with Applications, 29(2):27–62, 1995. 2

[18] Robert S. Boyer and J Strother Moore. A Computational Logic. ACM Mono-

graph Series. Academic Press, 1979. 318, 380, 384, 386, 389

[19] Robert S. Boyer and J Strother Moore. Mechanized formal reasoning about

programs and computing machines. In R. Veroff, editor, Automated Reasoning

and its Applications, Essays in Honor of Larry Wos. MIT Press, 1996. 20

[20] Bishop Brock, Matt Kaufmann, and J Moore. ACL2 theorems about commercial

microprocessors. In M. Srivas and A. Camilleri, editors, Formal Methods in

Computer-Aided Design (FMCAD ’96), volume 1166 of LNCS, pages 275–293.

Springer-Verlag, 1996. 20

[21] Bishop Brock, Matt Kaufmann, and J Strother Moore. Rewriting with equiva-

lence relations in ACL2. Journal of Automated Reasoning, 40(4):293–306, May

2008. 4

[22] James L. Caldwell and John Cowles. Representing Nuprl proof objects in ACL2:

Toward a proof checker for Nuprl. In Dominique Borrione, Matt Kaufmann, and

J Moore, editors, ACL2 ’02, April 2002. 467

[23] Amine Chaieb and Tobias Nipkow. Verifying and reflecting quantifier elimina-

tion for Presburger arithmetic. In Logic Programming, Artificial Intelligence,

520

and Reasoning (LPAR ’05), volume 3835 of LNCS, pages 367–380. Springer-

Verlag, 2005. 4, 469

[24] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. Social processes

and proofs of theorems and programs. In Principles of Programming Languages

(POPL ’77), pages 206–214. ACM Press, 1977. 2

[25] Solomon Feferman, editor. Kurt Gödel: Collected Works, volume 1. Oxford

University Press, 1986. 521

[26] James H. Fetzer. Program verification: The very idea. Communications of the

ACM, 31(9):1048–1063, September 1988. 1

[27] Ruben A. Gamboa. The correctness of the Fast Fourier Transform: a structured

proof in ACL2. Formal Methods in System Design, 20(1):91–106, January 2002.

333

[28] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica

und verwandter Systeme I. Monatshefte für mathematik und physik, 38:173–

198, 1931. English translation in [25], pages 145–195: On formally undecidable

propositions of Principia Mathematica and related systems I. 465

[29] Wolfgang Goerigk. Compiler verification revisited. In Computer-Aided Rea-

soning: ACL2 Case Studies, chapter 15. Kluwer Academic Publishers, 2000.

20

[30] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh

LCF: A Mechanised Logic of Computation, volume 78 of LNCS. Springer-Verlag,

1979. 361, 393, 461

521

[31] Michael J. C. Gordon. From LCF to HOL: A short history. In G. Plotkin,

Colin P. Stirling, and Mads Tofte, editors, Proof, Language, and Interaction.

The MIT Press, 2000. 4

[32] Michael J. C. Gordon, James Reynolds, Warren A. Hunt, Jr., and Matt Kauf-

mann. An integration of HOL and ACL2. In Formal Methods in Computer

Aided Design (FMCAD), pages 153–160, Nov 2006. 472

[33] Mike Gordon, Avra Cohn, Tom Melham, Konrad Slind, Michael Norrish, and

et al. The HOL system: Description, September 2005. For HOL Kananaskis-3.

4, 361, 403

[34] Mike Gordon, Avra Cohn, Tom Melham, Konrad Slind, Michael Norrish, and

et al. The HOL system: Tutorial, September 2005. For HOL Kananaskis-3.

459

[35] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative

ring done right in Coq. In J. Hurd and T. Melham, editors, Theorem Proving

in Higher Order Logics (TPHOLS ’05), volume 3603 of LNCS, pages 98–113.

Springer Berlin, 2005. 469

[36] David Greve, Matthew Wilding, and David Hardin. High-speed, analyzable sim-

ulators. In Computer-Aided Reasoning: ACL2 Case Studies, chapter 8. Kluwer

Academic Publishers, 2000. 20

[37] David A. Greve, Matt Kaufmann, Panagiotis Manoilos, J Strother Moore, Sandip

Ray, José Ruiz-Reina, Rob Sumners, Daron Vroon, and Matthew Wilding. Effi-

cient execution in an automated reasoning environment. Journal of Functional

Programming, 18(1), January 2008. 6

522

[38] David Griffioen and Marieke Huisman. A comparison of PVS and Isabelle/HOL.

In Jim Gundy and Malcom Newey, editors, Theorem Proving in Higher Order

Logics (TPHOLS ’98), volume 1479 of LNCS, pages 123–142. Springer-Verlag,

September 1998. 462

[39] John Harrison. Metatheory and reflection in theorem proving: A survey and

critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge,

UK, 1995. 4, 469

[40] John Harrison. HOL light: A tutorial introduction. In M. Srivas and A. Camil-

leri, editors, Formal Methods in Computer-Aided Design (FMCAD ’96), volume

1166 of LNCS, pages 265–269. Springer-Verlag, 1996. 4, 361, 459

[41] John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach

and Natarajan Shankar, editors, International Joint Conference on Automated

Reasoning (IJCAR ’06), volume 4130 of LNAI, pages 177–191. Springer-Verlag,

August 2006. 466

[42] Joe Hendrix. Matricies in ACL2. In ACL2 ’03, July 2003. 333

[43] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576–583, October 1969. 1

[44] Douglas J. Howe. Computational metatheory in Nuprl. In E. Lusk and R. Over-

beek, editors, Conference on Automated Deduction (CADE ’88), LNCS, pages

238–257. Springer-Verlag, March 1988. 20

[45] Warren A. Hunt, Jr. FM8501: A Verified Microprocessor. LNCS. Springer,

June 1994. 20

523

[46] Warren A. Hunt, Jr., Matt Kaufmann, Robert Bellarmine Krug, J Moore, and

Eric Whitman Smith. Meta reasoning in ACL2. In J. Hurd and T. Melham,

editors, Theorem Proving in Higher Order Logics (TPHOLS ’05), volume 3603

of LNCS, pages 163–178. Springer Berlin, 2005. 4, 321, 322, 468

[47] Warren A. Hunt, Jr., Robert Bellarmine Krug, and J Moore. Linear and non-

linear arithmetic in ACL2. In D. Geist, editor, Correct Hardware Design and

Verification Methods (CHARME ’03), volume 2860 of LNCS, pages 319–333.

Springer-Verlag, 2003. 4

[48] Warren A. Hunt, Jr. and Erik Reeber. Applications of the DE2 language. In

Mary Sheeran and Tom Melham, editors, Designing Correct Circuits (DCC ’06).

ETAPS ’06, March 2006. 20

[49] Warren A. Hunt, Jr. and Sol Swords. Centaur technology media unit verifi-

cation. Case study: Floating-point addition. In Computer Aided Verification

(CAV), volume 5643 of LNCS, pages 353–367. Springer-Verlag, June 2009. 20,

472

[50] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided

Reasoning: An Approach. Kluwer Academic Publishers, June 2000. 2, 4, 19,

161, 471, 475

[51] Matt Kaufmann and J Moore. The ACL2 user’s manual, 2009. Version 3.6.1.

Available online: http://www.cs.utexas.edu/users/moore/acl2/v3-6/new/v3-6-

1/HTML/acl2-doc-index.html. 460

[52] Matt Kaufmann and J Strother Moore. An industrial strength theorem prover

for a logic based on Common Lisp. IEEE Transactions on Software Engineering,

23(4):203–213, April 1997. 332, 459

524

[53] Matt Kaufmann and J Strother Moore. A precise description of the ACL2 logic,

April 1998. 5, 19, 58, 471

[54] Matt Kaufmann and J Strother Moore. Structured theory development for a

mechanized logic. Journal of Automated Reasoning, 26(2):161–203, 2001. 471

[55] Matt Kaufmann, J Strother Moore, Sandip Ray, and Erik Reeber. Integrating

external deduction tools with ACL2. In Christoph Benzmüller, Bernd Fischer,

and Geoff Sutcliffe, editors, 6th International Workshop on the Implementation

of Logics, November 2006. 4, 468

[56] Todd B. Knoblock and Robert L. Constable. Formalized metareasoning in

type theory. In Logic in Computer Science (LICS ’86), pages 237–248. IEEE

Computer Society, June 1986. 470

[57] Leslie Lamport and Lawrence C. Paulson. Should your specification language be

typed? ACM Transactions on Programming Languages and Systems (TOPLAS

’99), 21(3):502–526, May 1999. 19

[58] Hanbing Liu and J Strother Moore. Executable JVM model for analytical

reasoning: A study. In Interpreters, Virtual Machines and Emulators (IVME

’03), pages 15–23, 2003. 20

[59] Hanbing Liu and J Strother Moore. Java program verification via a JVM deep

embedding in ACL2. In Konrad Slind, Annette Bunker, and Ganesh Gopalakr-

ishnan, editors, Theorem Proving in Higher Order Logics (TPHOLS ’04), pages

184–200, 2004. 20

[60] Donald MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. The MIT

Press, October 2001. 3, 19

525

[61] Panagiotis Manolios and Matt Kaufmann. Adding a total order to ACL2. In

ACL2 ’02, April 2002. 269

[62] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic: Algorithms and

mechanization. Journal of Automated Reasoning, pages 1–37, 2006. 46

[63] John McCarthy. Recursive functions of symbolic expressions and their compu-

tation by machine, part 1. Communications of the ACM, 3(4):184–195, April

1960. 19, 218

[64] William McCune and Olga Shumsky. Ivy: A preprocessor and proof checker for

first-order logic. In Computer-Aided Reasoning: ACL2 Case Studies, chapter 16.

Kluwer Academic Publishers, 2000. 466

[65] J Moore. Symbolic simulation: An ACL2 approach. In G. Gopalakrishnan and

P. Windley, editors, Formal Methods in Computer-Aided Design (FMCAD ’98),

volume 1522 of LNCS, pages 334–350. Springer-Verlag, November 1998. 20

[66] J Strother Moore and Qiang Zhang. Proof pearl: Dijkstra’s shortest path algo-

rithm verified with ACL2. In J. Hurd and T. Melham, editors, Theorem Proving

in Higher Order Logics (TPHOLS ’05), volume 3603 of LNCS, pages 373–384.

Springer Berlin, 2005. 20

[67] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

4, 460

[68] Steven Obua and Sebastian Skalberg. Importing HOL into Isabelle/HOL. In

Ulrich Furbach and Natarajan Shankar, editors, International Joint Conference

on Automated Reasoning (IJCAR ’06), volume 4130 of LNAI, pages 298–302.

Springer-Verlag, August 2006. 462, 466

526

[69] Russell O’Connor. Essential incompleteness of arithmetic verified by coq. In

J. Hurd and T. Melham, editors, Theorem Proving in Higher Order Logics

(TPHOLS ’05), volume 3603 of LNCS, pages 245–260. Springer Berlin, 2005.

465

[70] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.

In Deepak Kapur, editor, Conference on Automated Deduction (CADE), volume

607 of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag,

June 1992. 4, 462

[71] S. Owre, J. M. Rushby, N. Shankar, and D. W. J. Stringer-Calvert. PVS:

An experience report. In Dieter Hutter, Werner Stephan, Paolo Traverso, and

Markus Ullman, editors, Applied Formal Methods–FM-Trends 98, volume 1641

of LNCS, pages 338–345. Springer-Verlag, October 1998. 460

[72] Lawrence C. Paulson. Logic and Computation: Interactive Proof with Cambridge

LCF. Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, July 1990. 403

[73] David L. Rager and Warren A. Hunt, Jr. Implementing a parallelism library

for a functional subset of LISP. In International Lisp Conference (ILC), pages

18–30, March 2009. 6, 420, 474

[74] Sandip Ray, John Matthews, and Mark Tuttle. Certifying compositional model

checking algorithms in ACL2. In ACL2 ’03, July 2003. 20

[75] Tom Ridge and James Margetson. A mechanically verified, sound and complete

theorem prover for first order logic. In J. Hurd and T. Melham, editors, Theorem

Proving in Higher Order Logics (TPHOLS ’05), volume 3603 of LNCS, pages

294–309. Springer Berlin, 2005. 465

527

[76] J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, and F.-J. Martín-Mateos. A for-

mally verified quadratic unification algorithm. In Matt Kaufmann and J Moore,

editors, ACL2 ’04, November 2004. 20

[77] David M. Russinoff. A mechanically checked proof of IEEE compliance of a

register-transfer-level specification of the AMD-K7 floating-point multiplication,

division, and square root instructions. LMS Journal of Computation and Math-

ematics, 1:147–200, December 1998. 20

[78] David M. Russinoff and Arthur Flatau. Mechanical verification of register-

transfer logic: A floating-point multiplier. In Computer-Aided Reasoning: ACL2

Case Studies, chapter 13. Kluwer Academic Publishers, 2000. 472

[79] David M. Russinoff and Arthur Flatau. RTL verification: A floating-point

multiplier. In Computer-Aided Reasoning: ACL2 Case Studies, chapter 13.

Kluwer Academic Publishers, 2000. 20

[80] Jun Sawada. Verification of a simple pipelined machine model. In Computer-

Aided Reasoning: ACL2 Case Studies, chapter 9. Kluwer Academic Publishers,

2000. 20

[81] Peter Seibel. Practical Common Lisp. Apress, April 2005. 103

[82] N. Shankar. Metamathematics, Machines, and Gödel’s Proof. Cambridge Uni-

versity Press, 1994. 161, 177, 186, 190, 465

[83] Joseph R. Shoenfield. Mathematical Logic. The Association for Symbolic Logic,

1967. 19, 161, 186, 190, 471

[84] Konrad Slind. Adding new rules to an LCF-style logic implementation: Pre-

liminary report. In L. J. M. Claesan and M. J. C. Gordon, editors, Higher

528

Order Logic Theorem Proving and its Applications (TPHOLS ’92), volume A-20

of IFIP Transactions. Elsevier Science Publisher, September 1992. 469

[85] Eric Smith, Serita Nelesen, David Greve, MatthewWilding, and Raymond Richards.

An ACL2 library for bags. In Matt Kaufmann and J Moore, editors, ACL2 ’04,

November 2004. 468

[86] Guy L. Steele. Common LISP: The Language. Digital press, second edition,

June 1990. 103

[87] Sol Swords andWilliam R. Cook. Soundness of the simply typed lambda calculus

in ACL2. In Panagiotis Manolios and Matthew Wilding, editors, ACL2 ’06,

August 2006. 333

[88] Cornell University The PRL Group. Implementing mathematics with the Nuprl

proof development system, October 1995. 460

[89] Diana Toma and Dominique Borrione. SHA formalization. In ACL2 ’03, July

2003. 20

[90] J. von Wright. The formal verification of a proof checker, 1994. SRI Internal

Report. 465

[91] J. von Wright. Representing higher-order logic proofs in HOL. In Thomas F.

Melham and Juanito Camilleri, editors, Higher Order Logic Theorem Proving and

Its Applications (TPHOLS ’94), volume 859 of LNCS. Springer-Verlag, Septem-

ber 1994. 465

[92] Matthew Wilding, David Greve, and David Hardin. Efficient simulation of

formal processor models. Formal Methods in System Design, 18(3):233–248,

May 2001. 472

529

[93] Wai Wong. Recording and checking HOL proofs. In E. Thomas Schubert,

Phillip J. Windley, and Jim Alves-Foss, editors, Higher Order Logic Theorem

Proving and its Applications (TPHOLS ’95), volume 971 of LNCS, pages 353–

368. Springer-Verlag, September 1995. 462

[94] William D. Young. A Verified Code-Generator for a Subset of Gypsy. PhD

thesis, University of Texas at Austin, December 1988. 20

530

Index

arity-table, 125
axioms, 125
defined-functions-table, 110
milawa-abbreviations-hash-table, 136
milawa-readtable, 136
proof-checker, 133
theorems, 125
<<, see Total order

Abbreviations (in files, #1=. . .), 136
Abbreviations (in the logic)

definitions of, 41–43
for Common Lisp execution, 109
translation of, 113–125

Absurd terms, 248
Acceptable objects, 106–107

when reading commands, 145
when reading files, 137

Accumulated-persistence, 415
ACL2, 2

discussion of, 460–461
logic of, 19
proof plan, 7–10
uses of, 20

Active rules stack, 415
Actuals of a lambda abbreviation, 22
Admissibility, 58
Advise, 415
Ancestors checking, 316–319
Ancestors-limited rewrite, 329
Appeals

definition of, 78
derived rules as, 424–427
equivalence traces as, 435
primitive rules as, 80–98
rewrite traces as, 440

Application functions (tactics), 361
Arithmetic procedure, 2, 269

Arithmetic utilities, 62
Arity tables

and builder faithfulness, 203
arities of primitives, 31
definition of, 23
functions for, 73
initial arity table, 91, 125

Arrow type, 462
Association lists, 66

fast association lists, 326
Associativity rule

definition of, 25
step-checking function, 81

Assume-left, 270
Assume-right, 270
Assumptions

assumptions control structures, 281
assumptions structures, 281
empty assumptions structure, 282
fast assumptions, 285
fundamental operations, 267
obligation of simplify, 271
recording hypotheses, 270
sources of, 267

Assumptions rewrite traces, 295
Atomic formulas, 151, 186
Atoms, 32
%Autoadmit, 409
%Autoprove, 412
Axioms

about the primitives, 34
definitional axioms, 44
for recursive functions, 59
in builder faithfulness, 195
in mathematical logic, 25
initialization in Common Lisp, 126
step-checking function, 80

531

Backchain limits, 302
Backchaining loop, 317
Backward proof, 224
Bad objects, see Acceptable objects
Base evaluation rule

definition of, 41
step-checking function, 92–94

Base evaluator, 92
Basic formulas, 186
Basic rules, see Primitive rules
Beta reduction rule

definition of, 26
step-checking function, 90

Beta-reduction rewrite traces, 296
Betamode of a control structure, 305
:Bind-free, 321
Blocking (caching), 327
Body

of a lambda abbreviation, 22
of a recursive function, 59

Bound variables
of a witnessing function, 61

Boyer-Moore provers, see ACL2
Breadth-first, 391
Builders, 151

reasoning about, 154–159
recursive builders, 172
with arity constraints, 203
with axioms and theorems, 195

Building higher-level proofs, 431

Cache, 326–331
Cache line, 326
Cache-image, 351
Call maps

definition of, 60
implementation of, 127

Call tree, 432
Cantor normal form, 46
Cases transformation, 259

Cheap rules, see Backchain limits
Cheapen tactic, 374
%Check, 413
Checkpointing, 143
Clauses

clause formula, 224
cleaning, 240–249, 364
definition of, 224
splitting, 249–255, 364, 437, 438
subsumed clauses, 249
updating clauses, 230

Cleanup tactic, 378
Cline-image, 351
Command loop, 145
Common Lisp, 4

compatibility with, 21
implementations, 455
reference manuals, 102

Compact printing, 414
Compiling

equivalence traces into proofs, 277
formulas into clauses, 225
functions in Common Lisp, 105
rewrite traces into proofs, 297
skeletons into proofs, 370

Complementary terms and clauses, 248
Computer mistakes, 1, 3, 454
Conditional eqsubst tactics, 378
Connectives
∧, 190
=, 159
↔, 190
→, 190
¬, 159
∨, 159

Cons-fix convention, 67
Conses, 32

representation in Common Lisp, 106
Constants

definition of, 22

532

recognizer of, 68
size of constants, 270
unquoting, 71

Contraction rule
definition of, 25
step-checking function, 82

Contradictory equivalence traces, 277
Control structures, 304
Create-theory tactic, 374
Crewrite tactics, 382
Cross-fertilization, 386
Crw, see Rewriter
Curry-Howard isomorphism, 462
Cut rule

definition of, 25
step-checking function, 83

:Cw-gstack, 418

Decision procedures, 2
Deduction law, 163
Default theory, 404, 413
Define command, 145
Definition

for our evaluator, 218
of functions with axioms, 44
recursive function event, 59

Defun-safe, 110
Depth-first, 392
Derived rule

definition of, 151
implementation of, see Builders
infix notation for, 159

Derived rules
= by arguments, 212
= from equal, 206
6= constants, 211
6= from not equal, 207
6= nil from iff t, 235, 483
Aux split default 1, 254, 508
Aux split default 2, 254, 508

Aux split default 3, 255
Aux split double negate lemma1,

252, 500
Aux split double negate lemma2,

252, 500
Aux split negative, 252, 502
Aux split negative 1, 252, 504
Aux split negative 1 lemma 1, 503
Aux split negative 1 lemma 2, 503
Aux split negative 2, 252, 505
Aux split negative 2 lemma 1, 504
Aux split negative 2 lemma 2, 504
Aux split positive, 253, 506
Aux split positive 1, 253, 507
Aux split positive 2, 253, 507
Aux split twiddle, 497
Aux split twiddle lemma 1, 497
Aux split twiddle2, 499
Aux split twiddle2 lemma 1, 498
Aux split twiddle2 lemma 1a, 498
Aux split twiddle2 lemma 2, 499
Aux split twiddle2 lemma 2a, 498
Aux update clause, 231
Aux update clause iff, 239
Aux update clause iff lemma1, 238
Aux update clause iff lemma2, 239
Aux update clause lemma1, 230
Aux update clause lemma2, 230
Cancel ¬¬, 162
Cases, 263
Cases lemma1, 261
Ccstep lemma 1, 358
Ccstep lemma 2, 358
Ccstep lemma 3, 359
Ccstep lemma 4, 359
Commute =, 196
Commute 6=, 197
Commute equal, 209
Commute iff, 236, 487
Commute or, 160

533

Compile formula, 228
Compile formula lemma 1, 227
Compile formula lemma 2, 228
Conditional eqsubst lemma1, 379
Conjoin, 191
Disjoined = by arguments, 216
Disjoined = from equal, 206
Disjoined = nil from negative lit,

379
Disjoined 6= from not equal, 208
Disjoined 6= nil from iff t, 235, 483
Disjoined assoc lemma 1, 167
Disjoined assoc lemma 1a, 167
Disjoined assoc lemma 2, 168
Disjoined assoc lemma 2a, 167
Disjoined assoc lemma 3, 169
Disjoined assoc lemma 3a, 168
Disjoined assoc lemma 4, 169
Disjoined associativity, 170
Disjoined aux split negative, 502
Disjoined aux split positive, 506
Disjoined cases lemma1, 262
Disjoined commute =, 197
Disjoined commute 6=, 198
Disjoined commute equal, 209
Disjoined commute iff, 236, 487
Disjoined commute or, 166
Disjoined commute or lemma 1, 166
Disjoined contraction, 164
Disjoined cut, 171
Disjoined cut lemma 1, 170
Disjoined cut lemma 2, 170
Disjoined dual substitution, 216
Disjoined equal from =, 206
Disjoined equal nil from not t, 205
Disjoined equal t from not nil, 204
Disjoined if when nil, 225
Disjoined if when not nil, 225
Disjoined if when same, 227
Disjoined iff from =, 237, 493

Disjoined iff from equal, 237, 494
Disjoined iff t from 6= nil, 235, 482
Disjoined iff t from not nil, 236, 486
Disjoined lambda = by argument,

216
Disjoined left expansion, 164
Disjoined modus ponens, 171
Disjoined modus ponens 2, 172
Disjoined modus ponens list, 176
Disjoined negative lit from = nil,

238, 495
Disjoined not equal from 6=, 207
Disjoined not nil from t, 201
Disjoined not t from nil, 202
Disjoined replace subterm, 217
Disjoined right associativity, 169
Disjoined right expansion, 171
Disjoined substitute iff into literal,

238, 496
Disjoined substitute into 6=, 199
Disjoined substitute into 6= lemma

1, 199
Disjoined transitivity of =, 200
Disjoined transitivity of equal, 210
Disjoined transitivity of iff, 237, 492
Disjoined update clause, 233
Dual substitution, 213
Dual substitution lemma 1, 213
Equal from =, 205
Equal nil from not t, 205
Equal reflexivity, 203
Equal t from not nil, 204
Equality, 194
Equivalence substitution, 192
Evaluation, 220
Factor, 258
Factor lemma 1, 257
Factor lemma 2, 258
Fertilize lemma 1, 387
First conjunct, 190

534

Generic subset, 180
Generic subset step, 180
Generic subset step lemma 1, 179
If of nil, 234, 478
If of t, 233, 478
If when nil, 220
If when not nil, 220
If when same, 227
Iff from =, 237, 493
Iff from equal, 237, 494
Iff reflexivity, 236, 487
Iff t from 6= nil, 234, 482
Iff t from not nil, 235, 486
Insert ¬¬, 162
Lambda = by argument, 215
Lhs cancel ¬¬, 163
Lhs commute or then rassoc, 262
Lhs insert ¬¬, 163
Lift1, 265
Merge implications, 166
Merge implications lemma 1, 165
Merge implications lemma 2, 165
Merge negatives, 164
Modus ponens, 161
Modus ponens 2, 161
Modus ponens 2 list, 176
Modus ponens list, 174
Multi-assoc expansion, 176
Multi-expansion, 178
Multi-or expansion, 179
Multi-or expansion step, 178
Negative lit from 6= nil, 238, 495
Normalize nots, 246
Not equal from 6=, 207
Not nil from t, 201
Not t from nil, 202
Obvious term, 247
Ordered subset, 184
Ordered subset aux, 183
Reflexivity, 194

Replace subterm, 217
Rev disjunction, 182
Revappend disjunction, 181
Right associativity, 162
Right expansion, 161
Second conjunct, 191
Standardize double-negative term,

243
Standardize double-negative term un-

der iff, 246
Standardize negative term, 243
Substitute iff into literal, 238, 495
Substitute into 6=, 198
Tautology, 189
Tautology lemma, 188
Transitivity of =, 200
Transitivity of equal, 210
Transitivity of iff, 237, 492
Update clause, 232
Update clause iff, 240

Destructor elimination, 380, 384
Direct iff equivalence traces, 273
Disabling functions, 154
Disjoined rule, 163
Disjoined set, 268, 278
Distinguished representative

of an equivalence set, 268
Distribute tactic, 383
Double negatives, 243
Duplicate terms, 249
Dynamic checks, 434

E/d tactic, 374
Elementary S-functions, 19
Elim tactics, 384
Eqltrace, 326
Equality

simple derivations, 194
term-level equality, 202

Equality substitution, 211

535

replacing subterms, 217
Equiv by args rewrite traces, 295
Equivalence databases, 278–281

fast equivalence databases, 286
Equivalence sets, 278

fast equivalence sets, 286
Equivalence substitution, 190
Equivalence traces, 271–278

as Level 5 proof steps, 435
Evaluation

generic evaluator, 218–222
rewrite traces, 294
syntax evaluator, 325

Events
in Common Lisp, 138–143
in the logic, 58–61

Expansion rule
definition of, 25
step-checking function, 84

:Export, 410
Extend-db, 280
Extend-sets, 280

Factoring terms, 256, 437
Failure rewrite traces, 294
Faithfulness

of a builder, 154
Fast association list, 326
Fast rewrite traces, 351
Fast rewriter, 350–355

faithfulness of
main lemma, 509–517

justification of, 351–355
Fast-assume-left, 289
Fast-assume-right, 289
Fast-empty-assms, 289
Fast-extend-db, 288
Fast-extend-sets, 288
Fast-join-sets, 288
Fast-maybe-extend, 287

Fast-try-assms, 289
Fast-update-head, 287
Fertilize tactic, 386
Fidelity

of Level 2, 428
Fidelity claim

for a proof checker, 134
Finish command, 145, 453
Finite objects, see Acceptable objects
First-order structures, 23

standard structures, 32
Flag functions, 69

reasoning about, 353
Forcing, 331–336

rewrite trace, 335
Formal proof, 2
Formal theorem

in builder faithfulness, 195
Formal theorems

Aux split negative, 501
Aux split positive, 505
Cases lemma, 260
Commutativity of =, 195
Crewrite rule lemma, 301
Equal nil or t, 204
Fertilize lemma1 helper, 387
If redux nil, 244
If redux same, 226
If redux t, 243
If redux test, 244
If when same, 226
Iff both false, 234, 481
Iff both true, 234, 480
Iff congruence lemma, 236, 487
Iff congruence lemma 2, 236, 488
Iff congruent if 1, 236, 488
Iff congruent iff 1, 236, 490
Iff congruent iff 2, 236, 489
Iff false true, 234, 481
Iff from =, 237, 493

536

Iff from equal, 237, 494
Iff lhs false, 234, 478
Iff lhs true, 234, 479
Iff nil or t, 235, 484
Iff nil when nil, 235, 484
Iff nil when not nil, 235, 484
Iff of if x t nil, 236, 490
Iff rhs false, 234, 479
Iff rhs true, 234, 480
Iff t when nil, 235, 483
Iff t when not nil, 234, 482
Iff true false, 234, 481
Not of not, 245
Not of not under iff, 245
Not t or not nil, 201
Not when nil, 275
Not when not nil, 300
Reflexivity of equal, 202
Reflexivity of iff, 235, 485
Standardize equal nil x, 242
Standardize equal x nil, 241
Standardize iff nil x, 242
Standardize iff x nil, 242
Substitute into 6=, 198
Symmetry of equal, 208
Symmetry of iff, 235, 485
Transitivity of =, 199
Transitivity of equal, 209
Transitivity of iff, 237, 491

Formal verification, 1
Formals

of a lambda abbreviation, 22
of a recursive function, 59

Formulas, 21
definition of, 23
functions for, 74–77
infix notation for, 159, 173

Forward proof, 224
Forward reasoning, 269
Forward-chaining rules, 269

Free variables
definition of, 22
functions for, 69
in rewrite rules, 319
of a witnessing function, 61

Fully expansive proofs, 4, 151
Function applications

definition of, 22
equality substitution, 211
functions for, 72

Function names
definition of, 22
recognizer of, 69

Functional equality rule
definition of, 25
step-checking function, 85–87

Gag-mode, 403
:Generalize, 384
Generalize tactics, 388
Generalized Boolean, 233
Gigacons, 421
Ground terms, 218
Ground-zero structure, 57
Grounding substitution, 324
Guards, 331
Guts of a term, 240

Hash-consing, 326
History

definition of, 58
in Common Lisp, 125–126

Hypboxes
definition of, 270
hypbox formula, 271

Hypotheses, 302
forcing, see Forcing

If false rewrite traces, 296
If general rewrite traces, 296
If lifting, 255–266, 364

537

If not rewrite traces, 297
If same rewrite traces, 297
If true rewrite traces, 296
Iff

definition of, 233
derivations for iff, 478–496

Ifftrace, 326
Images, see Checkpointing

in fast assumptions, 286
Incremental cost, 431
Induct tactic, 389
Induction rule

definition of, 56
step-checking function, 94–98

Infinite objects, see Acceptable objects
Inflating terms, 317
Initial arity table, 91
Inlining functions, 107, 111
Inside-out rewriting, 299
Instantiation rule

definition of, 26
step-checking function, 90

Interactive theorem proving, 2
Interning symbols, 105
Interpretation, 24

Join-sets, 280

Kilocons, 421

Lambda abbreviations
definition of, 22
equality substitution, 212–216
functions for, 72

Lambda equiv by args rewrite traces,
295

LCF approach, 4, 461–462
Leading symbol, 304
Level 2 proof checker, 423
Lexicographic ordering, 270
Lifted terms, 256

List functions, 63
List-fix convention, 64
Literals, 224, see Terms
Local events, 403
Logic.proofp, see Proofp
Logic.provablep, see Provability
Loop debugger, 418
:Loop-stopper, 412

Macros, 402
Main function, 148
Make-event, 402
:Match-free, 321
Mathematical logic

choice of, 19
confidence in, 3

%Max-proof-size, 422
Maybe-extend, 279
Measure

of a recursive function, 59
Megacons, 421
Memoization, 326
Merged-crw, 354
Metafunction, 467
Milawa, 4
Milawa package, 103
Models

of a program, 1
of a theorem proving program, 5

Mutually disjoint, 278

Natural numbers, 19
representation in Common Lisp, 105

Negative iff equivalence traces, 274
Negative terms, 240
Noexec list of a control structure, 305
Normalizing nots, 246
Not congruence rewrite traces, 297
NQTHM, 20
Numeric token, 21

538

Obvious terms and clauses, 247
Ordered pairs, see Conses
Ordinal obligation, see Termination obli-

gations
Ordinals, 46
Outside-in rewriting, 299

creating outside-in rules, 412

Packages, 103
Positive terms, 240
Primary equivalence traces, 273
Primitive functions, 31

in Common Lisp, 107–109
Primitive rules

builders for, 152, 154
definitions of, 25
step-checking functions, 80–98

Profiling, 415
Progress obligations, see Termination

obligations
Proof checking

our Common Lisp program, 102
running *proof-checker*, 133

Proof size, 421
Proof-building functions, see Builders
Proofp, 5

definition of, 99
in Common Lisp, 111

Proofs
about programs, 2
in mathematical logic, 2, 25
in ordinary mathematics, 1

Property lists, 304
Propositional calculus, 151

equivalence substitution, 190
recursive derivations, 172
simple derivations, 159
subsets of disjunctions, 177

Propositional schema rule
definition of, 25

step-checking function, 84
Provability

establishing for event admission, 133
formalization as logic.provablep, 100
formalizing, 5
in Common Lisp, 112
in mathematical logic, 25

Pump, 317

Reader macros, 136
Reading objects, 135–138
Readtable, 137
Recursive functions, 19

admitting recursive functions, 139
recursive function events, 59

Redefinition, 431
Relevance of a builder, 154
Restrict tactic, 374
Rewrite rules

definition of, 298
logical requirement, 300
presentation of, 298
syntactic restrictions, 322

Rewrite traces
and proof-building efficiency, 292
compilation into proofs, 297, 336
definition of, 293
formula for, 293
in justifying the rewriter, 292
in Level 8 proofs, 440
trace constructors, 342
well-formedness, 337

Rewrite-loop debugger, 418
Rewriter

ancestors checking, see Ancestors check-
ing

arguments and return value, 306
caching, see Cache
fast rewriter, see Fast rewriter
forcing, see Forcing

539

free-variable matching, 319
justification of, 336
Rewriting clauses, 355
rewriting constants, 308
rewriting if-expressions, 309
rewriting lambdas, 313
rewriting not-expressions, 310
rewriting other functions, 311
rewriting variables, 309
syntactic restrictions, 322

Rule traces, 300
justification of, 300

Rulers
of recursive calls, 60

Rules of inference, see Derived rules
in mathematical logic, 25

Save-and-exit, 143
Secondary equivalence traces, 273
Side-effects, 411
Simple terms, 255
Simple-world-change tactic, 373
Skeletons

compilation of, 370
definition of, 362
proof process, 363

Skolem command, 145
Skolem functions, see Witnessing func-

tions
Social process, 1
Software engineering, 1
Split-all tactic, 368
Split-first tactic, 366
Splitting assignment, 256
Stack depth, 218
Staged simplification, 391
Standard structures, 32
Standard universe, 32
State, 402
Static checks

in Level 3, 434
of Level 8 definitions, 441
of worlds, 444

Stored costs table, 415
Strategy, 393
Strict orderings, 47
Subgoal package, 403
Submapp (UI example), 403
Subsets

of disjunctions, 177
Substitution

definition of, 26
functions for, 87–90

Subsumed clauses, 249
Subterm, 256
Switch command, 145
Switching proof checkers, 135
Symbol generation, 385
Symbolic token, 21
Symbols, 19

representation in Common Lisp, 105
Syntax evaluator, 325
Syntaxp, 322

Tables, 402
Tactics, 361–400
Tautologies, 151, 186
Term order, 270
Termination obligations

definition of, 59
implementation of, 127

Terms
absurd terms, 248
complementary terms, 248
definition of, 22
duplicated terms, 249
factoring, 256
functions for, 67
ground terms, 218
guts of a term, 240

540

lifted terms, 256
obvious terms, 247
polarity of terms, 240
recognizer of, 70
simple terms, 255
subterms, 256
term formula, 224
term order, 270

Tests of a term, 256
The Method, 2
Theorems

admitting theorems, 138
in builder faithfulness, 195
step-checking function, 81
theorem events, 58

Theories, 304
Time reporting, 136
Token trees, 22
Tokens, 21
Total order, 269
Trace-image, 351
Transitivity equivalence traces, 275
Transitivity rewrite traces, 295
Translation, see Abbreviations
Transparency (caching), 327
Trivial equivalences, 383
True lists, 63
Trueterms, 282, 320
Truth valuations, 186
Try-assms, 283
Type reasoning, 269
Type-like hypotheses, 331

Undoing commands, 403
Union find, see Disjoined set
Universe

definition of, 23
representation in Common Lisp, 105
standard universe, 32

Unlifted subterms, 264

Unquoting, 71
Update-head, 279
Update-noexec tactic, 374
Urewrite tactics, 390
Urw, 390, 443
Use tactic, 390
User interface, 402–420
Utility functions, 62

Validation functions, 361
Validity of formulas, 24
Variables

definition of, 22
recognizer of, 67

Verify command, 145

Waterfall steps, 392
Waterfall tactic, 391
Weakening equivalence traces, 274
Well-formed

rewrite traces, 337
w.r.t. an arity-table, 23
formulas, 77
terms, 73

Well-founded relation, 47
Well-ordering, 47
Well-typed builder, 154
Witnessing functions, 19

admitting witnessing functions, 141
in Common Lisp, 112
witnessing function events, 61

World-changing tactics, 373
Worlds, 371–377

fast well-formedness checking, 444

Zero convention, 62

541

Vita

Jared Curran Davis graduated from Westside High School, Omaha, Nebraska.

In 1999 he entered the University of Nebraska at Omaha, and later graduated with

a Bachelor of Science. He entered the Graduate School at the University of Texas

at Austin in 2003. He has worked in software and hardware verification at Sandia

National Laboratories, Rockwell Collins, Inc., and Centaur Technology.

Permanent address: 11410 Windermere Meadows
Austin, Texas 78759-4551

This dissertation was typeset by the author.

542

	Acknowledgments
	Abstract
	Chapter 1. Introduction
	The Dissertation
	Planning the Proof
	Self-Verification
	A Verified Stack
	Organization of the Dissertation

	Part I The Trusted Core
	Chapter 2. The Logic
	Formulas
	Validity and Proof
	Basic Rules of Inference
	Primitive Functions
	Abbreviations
	Defining Functions with Axioms
	Ordinals
	Induction
	Events

	Chapter 3. The Proof Checker
	Utilities
	Terms
	Formulas
	Appeals
	Step Checking
	Proof Checking
	Provability

	Chapter 4. System Implementation
	Milawa Functions as Programs
	Supporting Abbreviations
	The History
	Termination Obligations
	Establishing Provability
	Reading Objects
	Events
	Checkpointing
	The Command Loop

	Part II Building Proofs
	Chapter 5. Propositional Calculus
	Implementing Derived Rules
	Reasoning about Derived Rules
	Simple Derivations
	Recursive Derivations
	Subsets
	Tautologies
	Equivalence Substitution

	Chapter 6. Equality
	Simple Derivations
	Term-Level Equality
	Equality Substitution
	Evaluation

	Part III Theorem Proving
	Chapter 7. Clauses
	Conversion to Clauses
	Updating Clauses
	Equivalent Literals
	Clause Cleaning
	Clause Splitting
	If Lifting

	Chapter 8. Assumptions
	Term Ordering
	Hypboxes
	Equivalence Traces
	Equivalence Databases
	Assumptions Structures
	Fast Assumptions

	Chapter 9. Rewriting
	Rewrite Traces
	Controlling the Rewriter
	The Rewriter
	Ancestors Checking
	Free-Variable Matching
	Syntactic Restrictions
	Rewriter Caching
	Forcing Hypotheses
	Justifying the Rewriter
	Fast Rewriting
	Rewriting Clauses

	Chapter 10. Tactics
	Implementing Tactics
	Worlds
	Tactic Library
	Verifying Tactics

	Part IV Self-Verification
	Chapter 11. User Interface
	Proof Management
	ACL2 Connection
	Proof-Checking Support
	Rewriter Debugging
	Parallelism

	Chapter 12. Bootstrapping
	Level 2 -- Propositional Rules
	Level 3 -- Basic Functions
	Level 4 -- Miscellaneous Groundwork
	Level 5 -- Equivalence Traces, Updating Clauses
	Level 6 -- Factoring and Splitting
	Level 7 -- Split Tactics
	Level 8 -- Rewrite Traces
	Level 9 -- Unconditional Rewriting
	Level 10 -- Conditional Rewriting
	Level 11 -- Tactics
	Comparing Proof Checkers
	Final Checks

	Chapter 13. Conclusion
	Relation to Other Work
	Future Directions

	Appendices
	Appendix A. Derivations for Iff
	Appendix B. Derivations for Clause Splitting
	Appendix C. Main Lemma for the Fast Rewriter

	Bibliography
	Index
	Vita

