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Formal verification

Programs have precise semantics – can 
be analyzed mathematically

“the proofs of even very simple 
programs run into dozens of pages”

DLP77

The social process does not work

Instead, we use software to build and 
check formal proofs

Mac01

Hoa69

How can we trust this software?



  

Current approaches

LCF style – fully-expansive, space-
efficient, safe theorem objects

Ad-hoc systems – informal, pragmatic 
notions of proof

BOU93, HAR95, GOR00, CN05

BM81, BM88, GH98, KM98, ORSSC98

Constructive type theory – propositions 
as types, proofs as objects

TPG95, Zam97, BC04



  

A mechanically-verified theorem prover

Construct an A-style proof that B is sound
Check the proof with A

A is a simple proof checker

B is an automated theorem prover

1. A v B   Given
2. ~A      Given
3. B v ~A  Expand 2
4. ~B v B  Prop ax
5. ~A v B  Cut 3, 4
6. B v B   Cut 1, 5
7. B       Contract

A “Q. E. D.”

Induct
Use lemma2
Case split
Rewrite

B “Q. E. D.”



  

Naturals
Symbols
Ordered pairs

Our language and logic

A pure Lisp

A simplified ACL2 logic

Our proof checker, A, can see itself and 
can reason about itself

guards
packages

non-natural numbers
characters

strings

guards
packages

non-natural numbers
characters

strings

if, equal
consp, cons, car, cdr
natp, +, -, <
symbolp, symbol-<

Objects Lisp primitives

+ + Terminating, 
recursive functions



  

Our logic at a glance

Sho67, KM98

¬A∨A

A∨A
A

A∨(B∨C)
(A∨B)∨C

A∨B    ¬A∨C
B∨C

A
B∨A

Prop. Schema

Contraction

Expansion

Associativity

Cut

A
A/σInstantiation

Reflexivity Axiom
x = x

Equality Axiom
x

1
 = y

1
 → x

2
 = y

2
 → x

1
 = x

2
 → y

1
 = y

2

Referential Transparency
x

1
 = y

1
 → ... → x

n
 = y

n
 → f(x

1 
, ..., x

n 
) = f(y

1 
, ..., y

n 
)

Beta Reduction
((λ x

1
 ... x

n
 . β) t

1
 ... t

n
)

 
= β/[x

1
← t

1
, ..., x

n
← t

n
]

Base Evaluation
e.g., 1+2 = 3

Lisp Axioms
e.g., consp(cons(x, y)) = t

Induction



  

List utilities
len, app, rev, memberp, uniquep, ...

63 lines
11 functions

Terms and formulas
recognizers, constructors, accessors

163 lines
39 functions

Substitution
substitutions, applying substitutions

62 lines
8 functions

Proof encoding
recognizer, accessors

27 lines
8 functions

Proof checking
step checkers, whole-proof checking

325 lines
27 functions

640 lines, 93 functions

+

Our proof checker, A

Command line program
Lisp package 59 lines 
Primitives 95 lines
File reader 108 lines
Termination 106 lines
Events and state 82 lines
Translation 192 lines
Initial axioms 113 lines

755 lines of Common Lisp

Lisp environment
Allegro, CMUCL, OpenMCL, ...

+

Avi95, Mac01



  

Our theorem prover, B

Styled after ACL2

Written in our logic, designed for 
verification



  

Planning the proof of B's soundness

Sketching the proofs with “ACL2-lite” – 
translate into A-style proofs later

Ground Term
Evaluator

Evaluation
Builder

x

x

x'
Soundness claim

x = x' is provable

Proving the soundness claims

A OK

Net result: ACL2 lemma libraries

Proof of
x = x'



  

Translating the lemma libraries

Use B (and its builders) to replay lemmas

New Conjecture

ACL2

“Q. E. D.”

Previous Lemmas

ACL2 Hints

New Conjecture

Previous Lemmas

B Hints B's Builders

A “Q. E. D.”

Proof size must be carefully managed

Proof
Object



  

A stack of verified proof checkers

Use A to verify A', A' to verify A'', ..., until 
we get to B

 1. ~A v B   Given
 2. A        Given
 3. B v A    Expand 2
 4. ~B v B   Prop ax
 5. A v B    Cut 3, 4
 6. B v B    Cut 5, 1
 7. B        Contract

A “Q. E. D.”

1. ~A v B  Given
2. A       Given
3. B       Modus Ponens

A' “Q. E. D.”

We now have three verified checkers



  

Significance of proof size reductions

88%

Level 2Base Level 2 Level 3

45%
55%

Level 3 Level 4



  

Present work

Translated 4,500 lemmas, including 
three extended proof checkers

Implemented A and its command loop

Wrote B and verified its proof methods 
with “ACL2-lite”



  

Contributions

Highly-extensible proof construction

Metatheory as an approach to building 
practical theorem provers

Efficient proof construction through 
verified proof methods

Potential target for other systems

Verified theorem proving algorithms



  

Related work

Mechanically-verified proof checkers

Embedding proof checkers in a logic

vW94, RM05, Har06

Göd31, Sha94

Independent proof checking
MS00, CC02, OS06



  

Metafunctions

meaning(fn(term), env) = meaning(term, env)

Support for metafunctions
BM81, KC86, Sli92, SNG+04, CN05, GM05

evaluator

metafunction

encoded term

Encoding terms, defining evaluators and 
metafunctions, soundness, integration
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