
A Trustworthy, Extensible Theorem Prover
Ph.D. Dissertation Proposal

Jared Davis
Department of Computer Sciences

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

jared@cs.utexas.edu

October 22, 2007

Contents

1 Introduction 1

2 Sketch of our proposal 3
2.1 Formal verification . 3
2.2 Our choice of logic . 4
2.3 Computers checking proofs . 5
2.4 Our proof checker . 7
2.5 Proof checker extensions . 7
2.6 Proposed extensions . 8
2.7 Using extensions . 10

3 Present and remaining work 11
3.1 Sketch of our logic . 11
3.2 Our proof checker . 16
3.3 Building Proofp-checkable proofs 18
3.4 Extending Proofp with a new rule 18
3.5 Proving the new rule is sound 20
3.6 Remaining work . 23

4 Related work 24
4.1 Current theorem provers . 24
4.2 Embedded proof checkers . 28
4.3 Independent proof checking 29
4.4 Meta reasoning . 30

1 Introduction

Programs have precise semantics, so we can use mathematical proof to es-
tablish their properties. These proofs are often too large to validate with the
usual “social process” of mathematics, so instead we develop and check them
with theorem-proving software. This software must be sophisticated enough
to make the proof process tractible, but this very sophistication casts doubt
upon the whole enterprise: who verifies the verifier?

In this thesis, we propose developing a useful, mechanically-verified the-
orem prover. Our program will satisfy two often-conflicting goals:

• Trust. Our prover will be based on a well-understood logic and should
only accept theorems. The soundness-critical code will be easy to iden-
tify and short enough for a good programmer or mathematician to
review in a few hours.

• Capability. Our system will provide tools to help the user construct
proofs. For example, it will permit the user to set up lemmas that can
be automatically reused to make progress in new proof attempts.

There are many ways to approach these goals. Ours is to prove our program
is sound, i.e., if it claims a formula is a theorem, then it is a theorem.

Of course, we cannot meaningfully use our program to prove its own
soundness, since this would be like asking someone if they ever lie. Instead, we
imagine two programs, A and B. A is a proof checker that only accepts proofs
composed of the most primitive steps, like instantiation and cut; A is so
simple the social process of mathematics can establish both its soundness and
the consistency of the logical theory it implements (so we know theorems are
“always true”). Meanwhile, B is the practically-useful, automated theorem
prover we are proposing to verify. In this thesis, we will construct an A-style
proof that shows B is sound, and check this proof with A. Then, since we
trust A, and since A says B is sound, we can also trust B.

Our first task is to write the proof checker, A. Which logic should A
implement? We will use a computational, quantifier-free, first-order logic of
total, recursive functions with induction, modeled after the ACL2 logic. Our
logic, like any other, puts forth a syntactic definition of proof, so writing a
proof checker just means translating this definition into a program. This is
straightforward and could be done in any reasonable programming language,
so which language should we use? Our logic, like ACL2’s, is compatible with

1

Common Lisp, so we can treat the functions we define as Lisp programs. And
there is good reason to write A as a program in our logic. Since our goal is
to use A to prove the soundness of B (“if B accepts φ, then φ is provable”),
we need a way to express provability in our logic. Writing A in our logic lets
us do this quite easily, i.e., we can say “φ is provable when there is a proof
of φ that A accepts.”

We also need to develop the theorem prover, B. Like A, we write B as
a program in our logic so we can reason about its definition. B will be far
more sophisticated than A, e.g., it will include a rule-driven simplifier which
can employ calculation. But this means the proof of B’s soundness will be
a deep result, which is concerning since A-style proofs are tedious to write
and excessively large.

How can we construct this proof? Our approach is first to use ACL2,
a mature and capable theorem prover, to “sketch out” the proof (normally
ACL2 is thought of as a formal and trusted tool, but here we are only using
it in an informal capacity.) Using ACL2 in this way allows us to plan our
proof without needing to confront, simultaneously, the problem of building
A-style proofs. After we have a solid idea of how the proof should go (and
are reasonably convinced it is, in fact, a theorem), we can begin working on
translating our sketch into an A-style proof.

How big will this A-style proof be? Will it be practical to use A to check
it? Here our approach is to layer the verification of B. That is, instead of
going directly from A to B, we will use A to verify A′, a slightly richer proof
checker, then use A′ to verify A′′, etc., until we get to B. Each successive
proof checker accepts a new kind of proof step that is not available in A, e.g.,
perhaps A′ adds a tautology checker so it can prove any tautology in one
step, whereas it might take hundreds or thousands of steps to prove some
tautology with A. Once each Ai has been verified, we can trust it as much
as we trust A, and we can make use of its new capabilities as we set out to
verify Ai+1.

Successfully verifying B will make the following contributions:

• A new tool. Our final program will be suitable in domains from circuit
analysis to program verification, and will convey greater confidence
than tools with larger, less deliberately-defined cores.

• Metatheory as a prover design. We will counter the size of formal proofs
by adding new proof methods to raise our level of abstraction, while
verifying these methods to ensure soundness.

2

• Extensible proof methods. Users may develop new, custom proof meth-
ods for their domains either as tactic-style programs for B, or as new
provers (B′, B′′, . . .) which can be verified with B. The work we have
done to verify B will provide useful lemmas for verifying these new
provers.

• Efficient proof construction. We will formally verify several extended
proof methods. By having shown these algorithms can be trusted, we
may freely use them without checking their work. For example, B will
include a verified rewriter.

• Potential target for other systems. External programs may be able to
construct higher-level, B- or B′-style proofs more easily than low-level
A-style proofs.

2 Sketch of our proposal

We will now give a more detailed tour of our proposal. We begin by discussing
the notions of formal proof and formal verification (§2.1), the logic we will
use (§2.2), the potential for errors when computers check proofs (§2.3), and
our A-style proof checker (§2.4). We then turn our attention to the extended
proof checkers (A′, A′′, . . . , B) and describe how they can be implemented
(§2.5), what types of proof methods they will implement (§2.6), and finally
how they can be put to use in the proof of B’s soundness (§2.7).

2.1 Formal verification

Formal verification is the use of mathematical proof to show hardware or
software designs have desirable properties. We adopt a Hilbert-esque notion
of proof as a “step-by-step, syntactically checkable deduction as may be car-
ried out within a consistent, formal logical calculus.” [DLP77] We call this
formal proof.

The “very idea” of formal verification was challenged by James Fet-
zer [Fet88], who argued programs are not mathematical entities because they
run on computers; hence, as in other applied sciences where measurements
are imprecise and natural laws are imperfectly understood, strict deductive
proofs are inappropriate. But we, like Hoare [Hoa69], view Computer Science
as an “exact science” of abstract mathematics; our programming languages

3

have pure semantics independently from any physical computers, and it is
through these semantics we wish to analyze a program’s design.

DeMillo, Lipton, and Perlis [DLP77] contested the value of formal proof,
arguing proof is instead the social process whereby mathematicians come to
agree a formula is a theorem. We call this informal proof. Formal proofs,
they argued, are too long and detailed to be believable, and cannot convey
intuition to the reader. This objection was not widely accepted [Mac01, §6],
for as Fetzer [Fet88] observed, the validity of a formula and our belief in
its validity are distinct; Winston and O’Brien may agree two plus two makes
five, but their consensus does not make it so. In contrast, only truths may be
derived in a sound logical framework, so formal proofs can serve as “objective
evidence” of the truth of a statement.

There is little hope mathematicians will be willing or able to prove prop-
erties about interesting programs informally, as “the proofs of even very
simple programs run into dozens of printed pages.” [DLP77] But unlike the
vaguely-defined social process behind informal proofs, formal proofs involve
only simple rules whose application can be checked by computer programs.
By automating the construction and checking of formal proofs, formal veri-
fication becomes possible.

2.2 Our choice of logic

Before we can build and check formal proofs, we must decide upon a “for-
mal logical calculus” to use. Modern theorem provers do not agree on any
standard, and this choice is “a matter of taste and experience” [LP99] which
may be viewed “eclectically and pragmatically.” [Mac01, §8]

We propose using a simplified version of the ACL2 logic [KM98, KMM00].
Our objects will be the symbols and naturals, recursively closed under or-
dered pairing. We will eliminate guards [KM94, §4.3] and packages to sim-
plify the connection with Common Lisp. We will also adopt infinitely-many
primitive constants and a new rule, called base evaluation, for applying
the basic functions like cons and + to constants; this is much like Mc-
Carthy’s [McC60] Lisp interpreter, apply, which had special cases to evaluate
“elementary S-functions” like cons.

The major characteristics of the ACL2 logic will be preserved. Our logic
will be first-order, will lack explicit quantifiers, and will have equality as its
only predicate symbol. We will directly adopt Shoenfield’s [Sho67] rules of
propositional calculus and ACL2’s instantiation and induction rules. We will

4

permit the introduction of total, untyped, recursive functions, the introduc-
tion of Skolem functions, and induction up to ε0.

Finally, parting with ACL2 to follow the work of Gödel [Göd31], we
will extend our logic with an integrated proof checker so we may establish
metatheorems about provability, e.g., “A′ only accepts provable formulas.”
We will also add a rule of computational reflection as described by Harri-
son [Har95], to allow the use of metatheorems during proofs, e.g., “A′ accepts
φ, so φ must be true.”

The logic just described will be rather restrictive, notably lacking types,
quantifiers, and higher-order functions. But, as Kaufmann, Manolios, and
Moore [KMM00] have noted, these limitations often “can be overcome with-
out undue violence to the intuitions you are trying to capture.” As evidence
of this claim, consider the diverse uses of the similarly-restrictive ACL2 sys-
tem, which include the verification of:

• processor models [BKM96, Moo98, GWH00, Saw00],

• RTL designs [Rus98, RF00],

• circuit models [Hun00, HR05, HR06],

• virtual machines [BM96, LM03],

• compilers [BT00, Goe00],

• imperative programs [LM04], and

• other algorithms [RMT03, TB03, RRAHMM04, MZ05].

There are also advantages to using a simple logic. For example, term quo-
tation and reflection are more straightforward when no types are involved and
term equality does not rely on reductions [Bar01, How88]. Also, because our
terms are so simple, our system will not need a type checker, type inference
engine, or much in the way of interfacing layers such as parsers and term
rendering.

2.3 Computers checking proofs

Formal proofs are too long for humans to check reliably, but computers are
well suited to this task. Our proof checking program, which we called A in the

5

introduction, will be a function called Proofp, defined in our logic; our logic
will be compatible with Common Lisp, so we can use a Lisp system to run this
function on a computer. There are several Lisp implementations, operating
systems, and hardware platforms to choose from, as shown in Figure 1.

Allegro

Linux x86, x86−64, PPC

MacOSX PPC, Intel

Windows 32/64

Misc. Unix 32/64

Solaris SPARC, AMD64

CLISP

Various Linux, BSD

MacOSX (Fink)

Windows (Cygwin)

Misc. Unix 32/64

Solaris x86, SPARC

CMUCL

Linux x86, Alpha

Various BSD x86

MacOSX PPC

Solaris SPARC

GCL

Linux x86, PPC, SPARC, ...

FreeBSD

Windows 32 (Cygwin)

Solaris SPARC

OpenMCL

Linux x86−64, PPC

MacOSX x86−64, PPC

SBCL

Linux x86, PPC, SPARC, ...

Various BSD x86

MacOSX PPC, Intel

Solaris x86, SPARC

Figure 1: A sampling of Common Lisp systems

Computers, operating systems, and Lisp compilers are not perfect, and
their defects might cause our program to incorrectly accept an invalid proof.
To make this less likely, we suggest using a heterogeneous collection of plat-
forms when checking proofs of interest. This idea, called n-version program-
ming [Avi95], is not without precedent in computer-assisted proof [Mac01,
ch. 4]. Because separate groups have independently developed these hard-
ware platforms, operating systems, and Lisp implementations1, it is unlikely
a diverse combination of these systems will share an equivalent error.

This argument is admittedly informal, but as Dijkstra [Dij82] wrote, “[Sci-
entific thought] derives its effectiveness from our willingness to acknowledge
the smallness of our heads” and deal with problems “in depth and in iso-
lation.” There are no formally verified processors, operating systems, and
programming environments available for us to use, and we must start some-
where.

1CMUCL and SBCL are forks of the same code base, but the other Lisps are original.

6

2.4 Our proof checker

Gödel [Göd31] defined a proof checker called Bw2 within his logic in order to
prove his incompleteness theorem. Bw depended upon 43 auxiliary definitions
which dealt with encoding proofs as objects in the logic, and with recognizing
valid, encoded proof steps.

Our logic will be more complex, and our Proofp function will make use of
auxiliary definitions including primitive Lisp functions (such as cons, natp,
and +), basic list utilities (e.g., len, app, and memberp), recognizers and
constructors for terms and formulas, substitution operations, and recogniz-
ers for valid proof steps. Our working draft of Proofp involves around 100
definitions, totalling under 1,000 lines of Lisp. In addition to Proofp, we will
also have a small command loop to read instructions from input files.

It will be difficult to write interesting Proofp-checkable proofs since Proofp
only implements basic rules of inference and provides no automation. How-
ever, it is simply written and is short enough to be thoroughly reviewed.
Part of our dissertation will be an explanation of why this program correctly
implements our logic, and why our logic is reasonable.

2.5 Proof checker extensions

For our system to be useful, we will need to make proof construction easier
and more automatic. We plan to do this by adding new proof methods that
are not found among the inference rules of our logic. In the introduction, we
called these A′, A′′, . . . , B. To maintain our trust in the system, we will need
to ensure these new proof methods are sound, i.e., they can only be used to
derive provable formulas.

Our Proofp function is shown graphically in Figure 2. For simplicity
we will ignore the function arities, axioms, and theorems it takes as inputs,
and only write Proofp(x), where x is the alleged proof to check. Proofs will
be made up of proof steps, and each step will have a method of proof, a
conclusion, and (except for axioms and theorems) some subproofs. A proof
step will be acceptable when its method can be applied to its subproofs
to obtain its conclusion, e.g., the contraction method can be applied to a
subproof of φ ∨ φ to conclude φ. A proof will be accepted by Proofp when
all its steps are proper applications of the inference rules of our logic.

2Short for Bewisfigur, German for proof figure.

7

ProofpAlleged Proof

Function Arities

Axioms

Theorems

Accept

Reject
associativity
cut
contraction
. . .

Figure 2: Operation of Proofp

An extension will be a new proof checking function, say Proof2p, that
accepts all the proof methods known to Proofp and also some new methods.
For example, perhaps Proof2p will add Modus Ponens or a tautology checker.
We will say Proof2p is sound when we can prove the soundness claim,

∀x : Proof2p(x)→ Provablep(Conclusion(x)),

where Provablep(φ) is defined as,

∃p : Proofp(p) ∧ Conclusion(p) = φ.

If this claim is a theorem, then Proof2p does not allow us to prove anything
that cannot be proven by Proofp.

We could establish soundness claims by hand or with another theorem
prover, but our trust in Proof2p would then depend on external proofs. To
avoid this, we propose defining our extensions as functions in our logic, so we
can express these soundness claims in our logic and prove them using only
Proofp and already-verified extensions.

In the end, we will trust all formulas accepted by Proofp are valid be-
cause Proofp is short and simple enough to review thoroughly. One of these
formulas will state Proof2p cannot accept formulas that are not accepted by
Proofp. Hence, we can trust any formula accepted by Proof2p is true.

2.6 Proposed extensions

We plan to add several proof methods, which we have classified in Figure 3
as either derived rules of inference or heuristic theorem proving.

8

Derived Rules of Inference

Propositional Rules

Equality Rules

Lambda Reduction Rules

The Deduction Law

The Tautology Theorem

Equivalence Substitution

Substitution of Equals for Equals

Heuristic Theorem Proving

Equality Reasoning

Clause Simplification

Calculation of Ground Terms

Destructor Elimination

Conditional Term Rewriting

Formula Compilation, Clausification

Figure 3: Overview of our extensions

We will begin with derived rules of inference for manipulating proposi-
tional formulas, such as Modus Ponens and double negation rules. We will
then add rules for equality, such as its transitivity and commutativity, and
the substitution of equal terms for arguments to functions and lambdas.

More interesting derived rules of inference will include the deduction law,
which allows us to prove F → G by temporarily assuming F is true, then
showing G follows. Other classic metatheorems will follow the work of Shoen-
field [Sho67] and Shankar [Sha94], and will include:

• Tautology checking for identifying propositional tautologies,

• Equivalence substitution for propositional formulas, i.e., replacing oc-
currences of F with G and vice versa after proving F ↔ G, and

• Equality substitution for formulas, i.e., replacing occurrences of t1 for
t2 and vice versa after proving t1 = t2.

These proof techniques do not embody a generic proof strategy and do
not take advantage of user-created knowledge such as lemma libraries. To
address these deficiencies, our heuristic theorem proving extensions are in-
tended to mimic the key strategies used by ACL2: to prove a formula, we
will compile it into an equivalent term, which will be converted into a clause;
we will simplify the clause by applying conditional rewrite rules, equality
reasoning, and calculation. This approach allows previously-proven lemmas

9

to be automatically reused in new proof attempts, so the user can focus on
developing strategies for the prover to follow on its own.

2.7 Using extensions

Logicians often appeal to metatheorems during otherwise-formal proofs. For
example, after proving the tautology theorem, one might say, “since φ is a
tautology, let p be a proof of φ,” without explicitly saying how p is to be
constructed. In other words, we feel free to substitute the metatheoretically
established “φ is provable” for a formal proof of φ.

Reflection refers to techniques that capture this idea without a separate
metalogic. In our system, the metatheoretic notion “φ is provable” will be an
ordinary, formal proof of Provablep(pφq), where pφq is the encoded form of φ.
To use this metatheorem, we will support computational reflection [Har95]:

Provablep(pφq)
φ

.

Suppose Proof2p is an extended proof checker that adds tautology check-
ing, and we have proven its soundness claim. We now want to be able to
prove formulas with Proof2p and its built-in tautology checker instead of
using the less-capable Proofp. Our reflection rule is one of two capabilities
needed for this; efficient computation of ground terms is the other. Suppose
p is a Proof2p-level proof of φ. Then, we can convert p into a Proofp-level
proof as follows:

1. ∀x,Proof2p(x)→ Provablep(Conclusion(x)) Soundness Theorem
2. Proof2p(p)→ Provablep(Conclusion(p)) Instantiation
3. Proof2p(p)→ Provablep(pφq) Computation
4. Proof2p(p) Computation
5. Provablep(pφq) Modus Ponens
6. φ Reflection

Recall that our logic will be compatible with Common Lisp, and our
extensions such as Proof2p will be functions in our logic. As a result, a
Common Lisp system can run our extensions. To justify steps 3 and 4 above,
we will use Lisp to evaluate Conclusion(p) and Proof2p(p).

Many theorem provers, including ACL2, PVS, Isabelle/HOL [BN02], and
Coq, allow evaluations in a programming language to be treated as proofs of

10

equality. But Harrison [Har95] has referred to this transition as a “glaring
leap of faith,” and Lisp evaluation is certainly no basic rule of inference.
To help justify our approach, an early extension will be an evaluator in the
spirit of McCarthy’s [McC60] function apply, and we will prove our evaluator
produces a value that is logically equal to its input term. We believe our
evaluator correctly models the semantics of Lisp evaluation for our fragment
of the language, but this argument can only be made informally since Lisp’s
evaluator is not defined in our logic.

3 Present and remaining work

In this section, we describe our logic (§3.1), the working draft of our proof
checker (§3.2), and the construction of Proofp-level proofs (§3.3). We then
introduce a simple extension of Proofp (§3.4) and explain how we were able
to verify this extension (§3.5). Finally, we remark upon what still needs to
be done (§3.6).

3.1 Sketch of our logic

Our universe, U, contains the naturals and symbols, closed under ordered
pairing. We take some notational conventions from Lisp:

• We write the ordered pair of a and b as (a . b),

• (x1 x2 . . . xn . b) is shorthand for (x1 . (x2 . . . xn . b)),

• () is shorthand for the symbol nil,

• (x) is shorthand for (x . nil), and

• (x1 x2 . . . xn) is shorthand for (x1 . (x2 . . . xn)).

Our terms are primitive constants, variables, function applications, and
λ abbreviations. We write terms in the typewriter font.

• We have a primitive constant for every x ∈ U, which we will write as
’x. For example, ’(1 . 2) is the constant corresponding to (1 . 2).

• We have a variable for every symbol except t and nil. For example, x,
y, foo, and bar, are variables.

11

• We have a function name for every symbol except nil; quote; first;
second; third; fourth; fifth; and; or; list; cond; let; let*; pequal*; por*;
and pnot*. We associate an arity with each function name. A function
application is written as (f t1 . . . tn) where f is a function name of
arity n, and each ti is a term.

• A lambda abbreviation is written as ((λ (x1 . . . xn) β) t1 . . . tn),
where each xi is a distinct variable, and β and each ti are terms. To
make substitution simpler, β may have no free variables besides the xi.

Since we do not allow t or nil to be variable symbols, no ambiguity arises
when we omit the quotes on ’t and ’nil; similarly we will not bother to
quote numbers when we wish to use them as constants.

Our formulas are equalities between terms (written t1 = t2), negations
(written ¬F), and disjunctions (written F ∨G). Other connectives (e.g., →,
∧, and ↔) are treated as abbreviations. Our formulas have no quantifiers,
and we interpret free variables in formulas as universally quantified at the
top level.

Our rules for propositional calculus are shown in Figure 4, and our rules
for equality are shown in Figure 5. Most of these are taken from ACL2 [KMM00,
§6] and Shoenfield [Sho67].

We take for granted certain base functions, inspired by Common Lisp,
shown in Figure 6. These functions are total; they can be applied to any
objects in our universe. For each base function f of arity n, and for all con-
stants c1, . . . , cn, we add an axiom of the form (f c1 . . . cn) = x, where x
is the appropriate constant. These axioms allow us to use primitive calcula-
tions in proofs, e.g., we can prove (+ 1 2) = 3 in one step. These axioms
also allow us to develop an evaluator for arbitrary ground terms, based on
McCarthy’s [McC60] apply function.

Like Kaufmann and Moore [KM98, p. 31–47], we add several “symbolic
axioms” to explain the behavior of our base functions, e.g., (consp (cons

x y)) = t and x 6= y → (equal x y) = nil. We also add an encoding
of the ordinals up to ε0, taken from Manolios and Vroon [MV06], which we
will use for termination proofs and to justify induction. Our induction rule is
based on ACL2’s rule [KMM00, p. 80], and is shown in Figure 7. We finally
define our proof checker in the logic so we can reason about provability.

12

¬A ∨ A Propositional schema

A ∨ A
A

Contraction

A
B ∨ A Expansion

A ∨ (B ∨ C)
(A ∨B) ∨ C Associativity

A ∨B ¬A ∨ C
B ∨ C Cut

A
A/σ

Instantiation

Figure 4: Propositional rules

x = x Reflexivity axiom

x1 = y1 → x2 = y2 → x1 = x2 → y1 = y2 Equality axiom

x1 = y1 → · · · → xn = yn → Functional equality
(f x1 . . . xn) = (f y1 . . . yn) schema

((λ (x1 . . . xn) β) t1 . . . tn) = Beta reduction
β/[x1 ← t1, . . . , xn ← tn] schema

Figure 5: Equality axioms

13

(if x y z) Returns y if x is non-nil, z otherwise
(equal x y) Checks if x and y are the same

(consp x) Checks if x is a pair
(natp x) Checks if x is a natural
(symbolp x) Checks if x is a symbol

(cons x y) Builds the pair (x . y)
(car x) Accesses the first element of an ordered pair∗

(cdr x) Accesses the second element of an ordered pair∗

(< x y) Checks if x is less than y†

(+ x y) Performs natural-number addition of x and y†

(- x y) Performs natural-number subtraction of y from x†

(symbol-< x y) Checks if x is a smaller symbol than y‡

∗ after interpreting non-pair arguments as (nil . nil)
† after interpreting non-natural arguments as 0
‡ after interpreting non-symbolic arguments as nil

Figure 6: Base functions

14

Induction rule.

We may derive a formula, F , from:

• A term, m, called the measure,

• A set of formulas, {q1, . . . , qk},

• For each formula qi, a set of substitution lists,

Σi = {σi,1, σi,2, . . . , σi,hi
}, and

• Proofs of each of the following formulas:

– Basis step

F ∨ q1 ∨ · · · ∨ qk
– Inductive steps

For each 1 ≤ i ≤ k,
F ∨ ¬qi ∨ ¬F/σi,1 ∨ · · · ∨ ¬F/σi,hi

– Ordinal step∗

(ordp m) = t

– Measure steps†

For each 1 ≤ i ≤ k and 1 ≤ j ≤ hi,
¬qi ∨ (ord< m/σi,j m) = t

∗ ordp is our recognizer for encoded ordinals
† ord< is our well-ordering on encoded ordinals

Figure 7: Induction rule

15

3.2 Our proof checker

We have developed a draft of our proof checker, which is complete except for
the reflection rule and efficient computation. We have ported our program to
several Lisp implementations. Our proof checker is similar to Gödel’s [Göd31,
pp. 163–171] Bw program, which was based on 43 auxiliary definitions,
including:

• Basic operations to encode recursive structures as prime powers (1–10),

• Constructors for encoded formulas (13–16),

• Recognizers for encoded variables, types, formulas, and sequences of
formulas (11, 12, 17–23),

• Variable binding and substitution operations (25–33, 37), and

• Recognizers for valid proof steps (34–36, 38–43).

Our logic is more complex, and our Proofp program relies upon around 100
definitions.

Gödel encoded terms as numbers using prime powers. Our encoding is
more readable since we can use lists and symbols.

• We encode ’x as (quote x),

• We encode the variable for the symbol v as v,

• We encode (f t1 . . . tn) as (f pt1q . . . ptnq), where ptiq represents
the encoding of ti, and

• We encode ((λ (x1 . . . xn) β) t1 . . . tn) as

((lambda (px1q . . . pxnq) pβq) pt1q . . . ptnq).

Since we do not allow quote to be used as a function name, there is no
confusion as to whether an encoded term represents a constant or a function
call. Similarly, we do not permit pequal*, pnot*, or por* to be used as
function names, so we can encode the formulas without overlapping the terms
as follows:

• We encode t1 = t2 as (pequal* pt1q pt2q),

16

• We encode ¬F as (pnot* pFq), and

• We encode F ∨G as (por* pFq pGq).

Finally, we encode proofs using appeals. Each appeal represents a single
step in the proof, and is a tuple of the form:

(method conclusion [subproofs] [extras]),

where:

• The method is the name of the proof rule being used,

• The conclusion is the formula this step purports to prove,

• If present, the subproofs are a list of subsidiary appeals which must also
be checked before this appeal can be considered valid (rules of inference
have subproofs, while axioms are “atomic” and do not), and

• If present, the extras contain any additional information needed to jus-
tify this step, e.g., an appeal to instantiation should specify the substi-
tution to be used.

For each rule of inference, we introduce a function to check if an appeal is
a valid application of the rule. For example, our instantiation rule allows us
to prove A/σ from a proof of A, so we write the function InstantiationOkp(x),
which checks that:

• The method is instantiation,

• There is a single subproof, call its conclusion A,

• The extras contain a substitution list, call it σ, and

• The conclusion is A/σ.

Finally, we introduce ProofStepOkp, which checks if a single step in the
proof is valid by inspecting its method and calling the appropriate rule-
checker. We recursively extend ProofStepOkp across the entire proof to ob-
tain Proofp, our whole-proof checker.

17

3.3 Building Proofp-checkable proofs

It is impractical to write Proofp-checkable proofs by hand. For example, even
our proof of x 6= y → z 6= x ∨ z 6= y, shown in Figure 8, takes a full page.
Accordingly, we have developed functions to construct proofs for us. These
builders typically use some input proofs, formulas, or terms to create a new
proof of a certain shape. We do not need to trust these builders since we can
check their output with Proofp.

We begin with simple builders for our primitive rules. For example,
BuildPropSchema conses together a proof of ¬A ∨ A given the formula A,
and BuildCut conses together a proof of B ∨ C given proofs of A ∨ B and
¬A ∨ C. These are used to create new builders that act like derived rules
of inference, e.g., “commutativity of or” is not a primitive rule, but we can
derive B ∨ A from a proof of A ∨B as follows:

1. A ∨B Given
2. ¬A ∨ A Propositional schema
3. B ∨ A Cut

We can translate these steps into a function, BuildCommuteOr , which creates
a proof of B ∨ A using a proof, x, of A ∨B as input:

BuildCommuteOr(x : A ∨B) = BuildCut(x,BuildPropSchema(A)).

We have developed many builders, including functions for manipulating
propositions, reasoning about logical equality, dealing with lambdas, and
handling the special equal, if, iff, and not functions. Our most sophisti-
cated builders perform large tasks such as if-lifting, clause splitting, evalua-
tion, and rewriting. These tools allow us to describe the proofs we wish to
construct more concisely, but the proofs they generate can become large and
checking them can be computationally expensive.

3.4 Extending Proofp with a new rule

We have verified a new proof checker, Proof2p, which extends proofp by
additionally accepting “commutativity of or” inferences in one step. Since
Proofp only needed two steps to achieve the same effect, the added power of
Proof2p over Proofp is negligible. But verifying this extension required us to
use Proofp to reason about itself and its relationship to Proof2p, and shows
we can handle all the “generic” work involved with verifying extensions.

18

(CUT (POR* (PEQUAL* X Y) (POR* (PNOT* (PEQUAL* Z X)) (PNOT* (PEQUAL* Z Y))))

((ASSOCIATIVITY (POR* (POR* (PNOT* (PEQUAL* Z X)) (PNOT* (PEQUAL* Z Y))) (PEQUAL* X Y))

((CUT (POR* (PNOT* (PEQUAL* Z X)) (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y)))

((CONTRACTION (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y)) (PNOT* (PEQUAL* Z X)))

((CUT (POR* (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y)) (PNOT* (PEQUAL* Z X)))

(POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y)) (PNOT* (PEQUAL* Z X))))

((CUT (POR* (PEQUAL* Y Y)

(POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X))))

((ASSOCIATIVITY (POR* (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X)))

(PEQUAL* Y Y))

((EXPANSION (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(POR* (PNOT* (PEQUAL* Z X)) (PEQUAL* Y Y)))

((EXPANSION (POR* (PNOT* (PEQUAL* Z X)) (PEQUAL* Y Y))

((INSTANTIATION (PEQUAL* Y Y)

((AXIOM (PEQUAL* X X)))

((X . Y)))))))))

(PROPOSITIONAL-SCHEMA (POR* (PNOT* (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X))))

(POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X)))))))

(CUT (POR* (PNOT* (PEQUAL* Y Y))

(POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X))))

((ASSOCIATIVITY (POR* (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X)))

(PNOT* (PEQUAL* Y Y)))

((CUT (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(POR* (PNOT* (PEQUAL* Z X)) (PNOT* (PEQUAL* Y Y))))

((ASSOCIATIVITY (POR* (POR* (PNOT* (PEQUAL* Z X)) (PNOT* (PEQUAL* Y Y)))

(POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y)))

((INSTANTIATION (POR* (PNOT* (PEQUAL* Z X))

(POR* (PNOT* (PEQUAL* Y Y))

(POR* (PNOT* (PEQUAL* Z Y))

(PEQUAL* X Y))))

((AXIOM (POR* (PNOT* (PEQUAL* X1 Y1))

(POR* (PNOT* (PEQUAL* X2 Y2))

(POR* (PNOT* (PEQUAL* X1 X2))

(PEQUAL* Y1 Y2))))))

((X1 . Z) (X2 . Y) (Y1 . X) (Y2 . Y)))))

(PROPOSITIONAL-SCHEMA (POR* (PNOT* (POR* (PNOT* (PEQUAL* Z X))

(PNOT* (PEQUAL* Y Y))))

(POR* (PNOT* (PEQUAL* Z X))

(PNOT* (PEQUAL* Y Y)))))))))

(PROPOSITIONAL-SCHEMA (POR* (PNOT* (POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X))))

(POR* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))

(PNOT* (PEQUAL* Z X)))))))))))

(PROPOSITIONAL-SCHEMA (POR* (PNOT* (POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y)))

(POR* (PNOT* (PEQUAL* Z Y)) (PEQUAL* X Y))))))))

(PROPOSITIONAL-SCHEMA (POR* (PNOT* (POR* (PNOT* (PEQUAL* Z X)) (PNOT* (PEQUAL* Z Y))))

(POR* (PNOT* (PEQUAL* Z X)) (PNOT* (PEQUAL* Z Y)))))))

Figure 8: Proofp-checkable proof of x 6= y → z 6= x ∨ z 6= y

19

The definition of Proof2p is straightforward. We begin by introducing a
new function, CommuteOrOkp(x), which accepts the appeal x only if:

• The method is commute-or,

• There is a single subgoal whose conclusion has the form A ∨B, and

• The conclusion is B ∨ A.

We then introduce Proof2StepOkp, which accepts the appeals recognized by
CommuteOrOkp and ProofStepOkp. We finally introduce Proof2p, which
recursively ensures every step in a proof is Proof2StepOkp.

To show we can trust Proof2p, we need to show it only accepts proofs of
formulas that could be proven by Proofp. That is, we want to show:

∀x : Proof2p(x)→ Provablep(Conclusion(x)),

where Provablep(φ) is defined as:

∃p : Proofp(p) ∧ Conclusion(p) = φ

The informal proof is straightforward. Assume Proof2p(x) holds, and in-
ductively assume all the subproofs of x consist entirely of Proofp-level steps.
If x is a not a commute-or step, then x is already accepted by Proofp. Oth-
erwise, x must be a commute-or step; assume it concludes B ∨ A from its
subproof of A ∨ B, and apply BuildCommuteOr to this subproof to obtain
an entirely Proofp-level proof of x’s conclusion.

Our strategy for verifying other extensions is similar: we write a builder
function that mimics our extension and can build a proof of any conclusion
the extension might make. We then show whenever we use the extension in
a high-level proof, our builder could have been used to create an equivalent
low-level proof. Hence, the extension can only be used to accept provable
formulas.

3.5 Proving the new rule is sound

We have constructed a Proofp-checkable proof of our soundness claim for
Proof2p. This was particularly challenging since, having no verified exten-
sions to work with, our proof could use only the primitive inferences.

Our proof effort was carried out in three phases:

20

• Phase 1. We developed a collection of proof tools (e.g., an evaluator,
a clause splitter, a rewriter) as ACL2 functions, and we used ACL2 to
“informally” prove these tools are sound.

• Phase 2. We used these tools to build a Proofp-style proof of the
soundness of Proof2p. This effort involves “translating” the ACL2-
style proofs from Phase 1 into Proofp-checkable objects.

• Phase 3. We checked the proofs from Phase 2 with our small command
loop program. This program is independent of ACL2 and can run in
many Lisp environments.

Phase 1. We first focused on creating the tools we expected to need to
prove Proof2p and other extensions are sound. For example, we developed
an evaluator and a rewriter which can build Proofp-checkable proofs to jus-
tify their claims. We could have written these tools in any language, but
developing them in ACL2 had two important advantages.

First, it gave us a straightforward way to turn our tools into extensions of
Proofp. This would not be important if our goal were only to verify Proof2p,
but we eventually want to develop a useful theorem prover which includes
facilities like evaluation and rewriting. Writing our tools in ACL2, which is
almost the same as our logic, will make it easy to introduce these functions
into our system. If we had instead implemented these tools as C programs
or Perl scripts, it would not be nearly so straightforward to reuse them in
this way.

Second, using ACL2 allowed us to “informally” prove our tools are sound.
Having these proofs available allowed us, in Phase 2, to focus on recreating
rather than discovering proofs. To ease this translation and lessen the number
of tools we needed to implement, we developed our ACL2 proofs without
using the more sophisticated features of ACL2, and restricted ourselves to
rewriting with lemmas, execution, destructor elimination, and induction.

Our ACL2 proof style is library-centric: we focus on creating collections
of rules which, together, can greatly simplify the terms we encounter during
proofs. Like Bevier [Bev87] we keep our function definitions disabled — that
is, the theorem prover only attempts to use definitions when it is explicitly
told to do so. But unlike Bevier, we keep our rewrite rules enabled and focus
on making them work well together. Sometimes we are able to predict useful
rules as we introduce new functions, while other times we only realize we need
a new rule after seeing a failed proof attempt. Because of this approach, our

21

ACL2 proof of the soundness claim for Proof2p occurs only incidentally as
one lemma among thousands of other rewrite rules.

Phase 2. To translate the soundness claim for Proof2p into a Proofp-style
proof, we focus on recreating these lemma libraries. To do this, we developed
a tactic-style interface to our proof tools from Phase 1. This interface can
be driven interactively: we can pose new conjectures, then perform rewriting
with lemmas, case splitting, destructor elimination, and so forth. We also
developed an auto tactical, which automatically tries using these different
approaches to make progress. As we prove each lemma, our rewriter becomes
more useful because it now has another rule to use. In the end, we were able
to construct the Proofp-counterparts of the all the lemmas leading up to and
including the soundness claim for Proof2p.

When generating proofs, we made use of Boyer and Hunt’s [BH06] mem-
oization and hash-consing extension of ACL2, which greatly increased our
proof-building speed and memory efficiency. When we saved proofs to disk,
we used a structure-sharing representation where repeated terms can be
named and referred to later.

Sometimes our proofs grew too large to deal with. Typically this could
be addressed by choosing more careful proof strategies, e.g., controlling when
definitions are expanded to avoid introducing case explosions, and by intro-
ducing intermediate lemmas as necessary. Other times, our proof-building
tools had to be improved. As the most severe example of this, an early draft
of our evaluation builder was written without paying attention to proof sizes,
and its proof of fib(2) = 2 was over 790 million conses; a revised draft took
only 35,000 conses to build the same proof.

Phase 3. Finally, we checked the generated proofs to ensure they were
valid. We have implemented a small Common Lisp program to run our proof
checker. This program is is independent from ACL2 and does not include any
memoization code. It processes a list of instructions, e.g., “add this theorem
which is justified by this proof” and “admit this function whose termination
is guaranteed by this proof.” The proofs are checked in order, one by one.

It took 7.6 hours to check all our lemmas using OpenMCL as the Lisp
environment on our development machine (a 2.2-GHz AMD Opteron system
with 32 GB of memory running 64-bit Linux). We then double-checked the
proofs in 4.1 hours using CMUCL on a different machine (a 2.13-GHz Intel
Core 2 processor with 4 GB of memory running 32-bit Linux). For our thesis,
we also plan to check our proofs using additional platforms to minimize any
chance that a computer error has inappropriately caused some proof to be

22

accepted.
How big is the proof of the soundness claim? Including all the lemmas

leading up to and including our soundness claim, we have over 200 definitions
and 2,000 rewrite rules whose proofs take nearly 2 GB of disk space. These
proofs are generated by about 6,000 lines of code which drive our tactic
interface, and this build process takes about 50 minutes to complete when
running in parallel on our development machine (which has 8 cores). A more
detailed breakdown is shown in Figure 9.

Directory Source lines Defs Rules Build time Proof size
Utilities 3,086 69 847 8.6m 488 MB
Logic 2,750 131 1,179 39.4m 1.4 GB
Build 389 28 114 6.6m 36 MB
Demo 132 6 42 20m 57 MB
Total 6,357 234 2,182 51m 1.9 GB

Statistics as of SVN Revision 401, Aug 2007. Line count excludes comments and blank lines. Rule
count excludes trivial definition rules. Build time computed with omake -j 8 on lhug-1.cs.utexas.edu
using ACL2 3.2.1 on OpenMCL; total time is better than the sum since added parallelism is available
when building multiple directories.

Figure 9: Proof size metrics by directory

Why is so much work needed for such a trivial extension? As Figure 9
suggests, the vast majority of our proof effort is not related to this particular
extension at all, but instead is spent laying the groundwork for reasoning
about arithmetic, lists, maps, terms, formulas, substitution, and proofs (the
utilities and logic directories).

3.6 Remaining work

In Section 2.6 we proposed developing a number of extensions, many of which
are far more complicated than the commutativity of or. The major remaining
challenge is to show the rest of these extensions are sound using only Proofp
and already-verified extensions.

We have already implemented these extensions in ACL2, and have created
ACL2 proofs showing they are sound. In other words, we have completed
Phase 1 for the entire project. We still need to translate these ACL2 proofs
into the proper Proofp-checkable (or Proof2p-checkable, etc.) form. We
believe this should be possible, as evidenced by our ability to verify the

23

commutativity of or extension. The tools we developed to complete this
verification, and the thousands of lemmas we have proven and can now reuse,
should give us a useful starting point for this work. As we progress, proof
size should become less of an issue, since introducing new proof methods will
allow higher-level proofs to be more compact. Nevertheless, we will likely
need to further improve our proof tools, and we may also need to develop
some new tactics.

We also need to address the issue of evaluation. We will need to set
up an efficient evaluator (i.e., a call of Lisp’s eval function), fairly early in
the stack of extensions so the reflective transition from higher-level proofs to
Proofp-level proofs can be done effectively. Ideally, this would be our first
extension, but proof size issues might force us to introduce some intermediate
extensions first. If this proves difficult, an alternate approach would be to
use Proof2p and later proof checkers directly, instead of extending Proofp
with a reflection rule.

4 Related work

4.1 Current theorem provers

There are several general-purpose proof systems available, including the
Boyer-Moore provers ACL2 [KM97] and NQTHM [BKM95]; higher-order
logic provers such as HOL 4 [GCM+05], HOL Light [Har96], Isabelle/HOL
[NPW02], and PVS [ORSSC98]; and constructive type theory provers such
as Coq [BC04] and Nuprl [TPG95].

Our logic is a slight variant of the ACL2 logic [KM98], which is the
least expressive among these systems. The other systems provide quantifiers
and higher-order functions, and use type systems to avoid logical paradoxes.
The logics of Nuprl and Coq are intuitionistic, though this does not seem
to have much impact on hardware and software verification. Despite the
restrictiveness of our logic, many formal verification problems can still be
expressed.

In the ACL2 system, proofs are “whatever the defthm command accepts.”
This proof search is influenced by a database of implicit rules and also by
explicit hints, and may involve rewriting, arithmetic reasoning, induction,
BDDs, and other techniques. These proof methods are highly complex and
do not resemble the rules of the ACL2 logic. The program has not been sub-

24

jected to any rigorous, formal analysis, and soundness bugs have occasionally
been discovered in official releases (see Figure 4.1). Proof attempts create
human-readable logs which explain at a high level what the prover is doing,
but these are not suitable for checking by other programs.

HOL systems have a more explicit notion of proof. Theorems in HOL
are objects of type thm and represent sequents Γ ` t where Γ is a set of
assumptions and t is a conclusion. The thm type is abstract, so the only way
to construct a thm is to use primitive, built-in functions corresponding to
HOL’s rules of inference. For example, HOL’s reflexivity rule is:

∅ ` t = t

The corresponding function, REFL, takes a term-typed argument t as input
and produces the thm with no assumptions and conclusion t = t. As another
example, HOL’s rule for discharging assumptions is:

Γ ` t2
Γ− {t1} ` t1 → t2

In other words, if t2 follows from Γ, then t1 → t2 follows after we remove t1
from Γ. The corresponding function, DISCH, takes t1 and a thm of the form
Γ ` t2 as inputs, and produces the thm, Γ− {t1} ` t1 → t2.

If the type system is implemented correctly, the only way to create a thm

object is to invoke functions like REFL and DISCH. As a result, any thm-type
object must have been created entirely by following the rules of inference.
Consequently, the intermediate steps of a proof need not be stored, although
sometimes proof recording schemes have been added to HOL systems [Won95,
BN00, OS06] to facilitate proof translation or external double-checking.

The PVS system [ORS92] also uses an abstract type to represent theo-
rems, but provides more powerful primitives than HOL systems, particularly
HOL Light [Har96]. For example, rewriting with lemmas is a primitive rule
in PVS. Griffioen and Huisman [GH98] regarded PVS favorably, but were
somewhat critical on this point: “these decision procedures sometimes cause
soundness problems... PVS still seems to contain a lot of bugs and frequently
new bugs show up.”

Coq and Nuprl have another, well-defined notion of proof. Certain types
are called propositions. Whenever the type of an object x is a proposition, we
say x itself is a proof of that proposition. No abstract type is used; instead

25

ACL2 Release Soundness Bugs Fixed

October, 1998 (Version 2.3) Subversive recursions
August, 1999 (2.4) Immediate force mode
June, 2000 (2.5) Metafunctions with hypotheses
November, 2001 (2.6) Linear arithmetic

Evaluation in proofs
November, 2002 (2.7) Functional instantiation

BDDs
Guards

March, 2004 (2.8) Tautology checking
ACL2 arrays
Proof checker commands
Defining packages
Tracking axioms
Type prescriptions in equivalences
Redundancy and single-threaded objects

October, 2004 (2.9) Package names
Tracking program mode
Macro expansion
Linear arithmetic

August, 2005 (2.9.3) Program mode in defconst
February, 2006 (2.9.4) Meta rules with local events
June, 2006 (3.0) Program mode in local
August, 2006 (3.0.1) Local table events
December, 2006 (3.1) Package witnesses

Forcing in linear arithmetic
Redundancy and measures

April, 2007 (3.2) Unknown/hidden packages
Meta rules
Redefinition and program mode
Raw lisp code in tracing

Figure 10: Some corrected ACL2 soundness bugs
Source: ACL2 release notes [KM07]

26

the proof rules are directly encoded into the type system as typing rules.
This is the Curry-Howard isomorphism: the proposition “P implies Q” can
be encoded as the arrow type of functions from P to Q, i.e., P → Q.

Like the thm approach, the correctness of these systems depends on a
relatively small kernel. The type system needs to be correctly implemented,
and the typing rules for propositions need to correspond to the logic. Since
whole proof terms are stored, this is potentially less space-efficient than the
abstract thm type approach. In Coq, this is somewhat alleviated by a complex
notion of term equality wherein reducibly-equivalent terms are said to be
equal. For example, Coq can prove 2+3 = 5 with a single use of its reflexivity
rule.

In most systems, proofs are constructed with fully-expansive, goal-directed
scripts called tactics. If a tactic attempts to build a theorem with an invalid
inference, an error will be caused and the proof attempt will fail. Tactics can
often be combined into strategies or tacticals, which can respond to failure
by trying other tactics, etc. Tactics need not be trusted and can be written
by the user (whereas trusted code must be written by the theorem prover’s
authors) since all their work will be checked by the thm constructors. Even
though our system does not use an abstract thm type, we can emulate tactics
by having them construct proofs instead of thms, and checking these proofs
with Proofp.

The ACL2 system does not have an explicit notion of proof, and its version
of tactics and tacticals, proof checker macros, are rarely used. Instead, the
built-in rewriter is controlled by adding lemmas. Indirect advice about how
to use these lemmas can also be added, making the approach somewhat
flexible and automatic: the user focuses on setting up rules that will work
well together, and the system applies this strategy to new problems. When
the default strategy is insufficient to prove a troublesome conjecture, extra
hints can be given by the user or automatically suggested by user-developed
heuristics (see, e.g., [Dav04]).

Nothing prevents a tactic-based system from following the heuristic rewrit-
ing approach. Boulton [Bou92] has implemented tactics to emulate some of
NQTHM’s automation in HOL, and lemma-based simplification is available
in most provers, e.g., autorewrite in Coq, the rewrite package in Nuprl,
rewrite tac in HOL 4, and the simp tactic in Isabelle/HOL. Indeed, in our
system we have primarily used a few tactics that emulate some of ACL2’s
automation.

27

4.2 Embedded proof checkers

General-purpose theorem provers are expressive enough that new proof-checking
programs can be expressed in their logics. In fact, the current draft of our
system can be understood as a proof checker written inside ACL2. This has
been done many times in various projects.

In a somewhat unique effort, Shankar [Sha94] wrote a proof checker in
NQTHM for Shoenfield’s first-order logic with Cohen’s Z2 axioms in order to
prove Gödel’s incompleteness theorem. His goal was to mechanically check
classic metamathematical theorems, and he did not intend to produce a new
theorem prover for everyday use. He used NQTHM to introduce extensions
like tautology checking, but did not try to “bootstrap” these proofs into a
form his proof checker could self-check.

More commonly, this approach has been used to study properties of simple
proof checking programs. For example:

• J. von Wright [vW94a, vW94b] wrote a proof checker for higher-order
logic in HOL. This involved defining a HOL specification, Is proof,
which describes the valid proofs. A primitive, imperative programming
language was then defined within HOL, and a proof checking program
was written in this language. HOL was used to show the imperative
program implemented the high-level Is proof specification.

• Ridge and Margetson [RM05] wrote a first order theorem prover as def-
initions in Isabelle/HOL and, using Isabelle/HOL, proved the program
to be sound and complete. The program does some proof search, but
they mention its performance is not competitive with typical resolution
provers.

• Harrison [Har06] has mimicked the implementation of HOL Light, an
OCaml program, as a HOL Light specification. By assuming an addi-
tional axiom about sets, he can show the encoded HOL system is con-
sistent. Without the axiom, he can show the encoded system except for
the axiom of infinity is consistent. These results indicate “something
close to the actual implementation of HOL” is sound.

In each of these efforts, an existing prover is trusted and is used to prove
properties about a new proof checking core. Our project is complementary:

28

we are willing to trust our small core, and our interest is in the verifica-
tion of new, extended proof methods. We do not propose to investigate the
soundness of our core mechanically.

4.3 Independent proof checking

There have also been some projects where one system is used to check the
work of another. This idea is somewhat like Boulton’s suggestion [Bou93]
of separating proof search from proof construction in HOL, but may also be
useful for “porting” results obtained in one system to another. A few such
projects include:

• McCune and Shumsky [MS00] have written ACL2 functions to check
proof objects emitted by Otter, a resolution prover, for validity. The
majority of the proof search can be offloaded onto Otter, and the ACL2
program only checks that Otter did not make a mistake. No attempt is
made to verify the resolution prover, which is an optimized C program,
but since the ACL2 program checks the proof transcript, ACL2 can be
used to show the combined system is sound.

• Caldwell and Cowles [CC02] describe preliminary work on indepen-
dently checking Nuprl proofs with a program written in ACL2. As
they emphasize, “we are not making claims about the correctness of
Nuprl itself,” which was seen as impractically hard: Nuprl’s implemen-
tation apparently involves a 60,000-line Lisp core and a 40,000-line ML
interface, with 167 rules of inference which are sometimes complicated,
e.g., the arith rule. The project is apparently still in the early stages.

• Obua and Skalberg [OS06] have extended HOL Light with a proof
recorder that tracks calls to the proof constructors. A complex structure-
sharing scheme is used in order to combat the size of proof objects, and
many proofs can be read into Isabelle/HOL and checked independently
from HOL Light. The authors speculate that adding “higher infer-
ence rules,” such as rewriting, might help to make the emitted proofs
smaller, but have not apparently tried to implement such a scheme.

Our project takes a different approach. Rather than checking some un-
verified proof method did not make a mistake after its every use, we want to
verify proof methods so we need not check their work.

29

4.4 Meta reasoning

Our system will have an integrated proof checker defined in its own logic so
we can directly reason about provability. This allows us to show new proof
techniques are sound and can be trusted.

Even without an integrated proof checker, other theorem provers have
some support for meta reasoning. Most of this work follows, with minor
differences, the metafunction approach [BM81], which involves five steps:

1. An encoding for the relevant terms is introduced,

2. A semantic function, meaning(term, env), is introduced to evaluate an
encoded term with respect to some assignment of variables,

3. A “metafunction”, fn(term), is introduced to simplify encoded terms,

4. The user proves meaning(fn(term), env) = meaning(term, env), for all
well-formed encoded terms and for all environments, to demonstrate fn
can be trusted, and

5. Some evaluation mechanism allows fn to be used to simplify encoded
terms in proofs.

In ACL2, a standard encoding (quoting) can be used, and meaning func-
tions for a fixed set of concepts can be introduced using the defevaluator

facility. A metafunction, fn, is a regular ACL2 program, written as a recur-
sive function that manipulates encoded terms. A built-in mechanism allows
the system to begin using a metafunction after the soundness theorem is
proven.

Metafunctions can be a useful tool for advanced ACL2 users, but they
have limitations. They are subservient to the rewriter and cannot keep state
between invocations, i.e., for building up databases of facts [SNG+04]. Also,
since the ACL2 simplifier is not a function in the ACL2 logic, metafunctions
can only call upon it heuristically [HKK+05]. That is, even if ACL2 can
rewrite term to term’, we cannot assume term = term ′ when we try to prove
the soundness theorem.

ACL2’s proof search is controlled by a large amount of unverified code,
and it is difficult to imagine “lifting” any substantial part of this into meta-
functions. Many features, such as linear arithmetic, are deeply integrated
into the rewriter [BM88], keep state across invocations, or do not fit into the

30

metafunction paradigm of replacing one term with an equal one (e.g., gen-
eralization). We would also face a bootstrapping problem: even if we could
cleanly extract a proof technique like type reasoning into a metafunction,
could we prove the soundness theorem without using type reasoning? We do
not see much hope of moving in this direction.

Metatheoretic extensibility is a challenge for HOL systems, where to add
a new proof procedure “we must somehow rip open an abstract type, tinker
with it to add a new constructor, and then close it up again.” [Har95]

Slind [Sli92] proposed a scheme for allowing mk thm, an “arbitrary” thm

constructor that does not correspond to any rule of inference, to be used
under restricted circumstances. First, the semantics of ML would be for-
malized in HOL, as would the HOL implementation. Then, mk thm t is to
be permitted only if we can prove there is some function f that produces a
usual, fully-expansive HOL proof of t. This idea was never implemented.3

More recently Chaieb and Nipkow [CN05] have written and verified a
quantifier-elimination procedure for Presburger arithmetic in Isabelle/HOL.
They encode Presburger formulas with a new type, and define their own
meaning function to map encoded formulas into Booleans (the formulas of
HOL). A metafunction-like elimination procedure is implemented in a subset
of HOL which can be compiled to ML using a HOL compiler [BN02]. Finally,
a new, experimental rule of inference is added to the system so executions
of the ML program are allowed to be treated as proofs of equality. This
system is apparently 200 times faster for solving Presburger formulas than
an equivalent, tactic-based solution. This technique avoids the burden of
formalizing an ML system and a HOL implementation as Slind proposed, but
the code for constructing thm objects remains separated from the logic, and
as a result we still cannot reason about thm construction and the provability
of formulas.

Metafunctions are also supported in Coq. Grégoire and Mahboubi [GM05]
have introduced a procedure for reasoning about equality between polyno-
mials in commutative rings. They define a new type to represent encoded
polynomials over a ring and provide a meaning function as above. They
show a metafunction-like canonicalization routine preserves the meaning of
encoded terms, and their procedure can then be used in proofs via Coq’s
evaluation/reduction facilities. As in Chaieb and Nipkow’s work, no method
is available for reasoning about the rules of inference and provability of for-

3Correspondence with Konrad Slind, August 2006.

31

mulas in general.
We are not aware of any support for metareasoning in PVS.
Knoblock and Constable [KC86] proposed two strategies for adding metar-

easoning to Nuprl. One approach involved a hierarchy of languages, where
each PRLn+1 would include an encoding of the PRLn proofs. In the other, a
stack of languages would not be needed, and instead part of PRL1 would be
directly encoded into PRL0. These ideas were never implemented.4

4Correspondance with Robert Constable, August 2006.

32

References

[Avi95] Algirdas A. Aviz̆ienis. The methodology of n–version
programming. In M. R. Lyu, editor, Software Fault
Tolerance, pages 23–46. Wiley, 1995.

[Bar01] Eli Barzilay. Quotation and reflection in Nuprl and Scheme.
Technical Report 2001-1832, Cornell University, 2001.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem
Proving and Program Development: Coq’Art: The Calculus
of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag, 2004.

[Bev87] William R. Bevier. A Verified Operating System Kernel.
PhD thesis, University of Texas at Austin, December 1987.

[BH06] Robert S. Boyer and Warren A. Hunt, Jr. Function
memoization and unique object representation for ACL2
functions. In ACL2 ’06, August 2006.

[BKM95] Robert S. Boyer, Matt Kaufmann, and J Strother Moore.
The Boyer-Moore theorem prover and its interactive
enhancement. Computers and Mathematics with
Applications, 29(2):27–62, 1995.

[BKM96] Bishop Brock, Matt Kaufmann, and J Moore. ACL2
theorems about commercial microprocessors. In M. Srivas
and A. Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD ’96), volume 1166 of
LNCS, pages 275–293. Springer-Verlag, 1996.

[BM81] R. S. Boyer and J Strother Moore. Metafunctions: proving
them correct and using them efficiently as new proof
proceedures. In R. S. Boyer and J Strother Moore, editors,
The Correctness Problem in Computer Science, pages
103–184. Academic Press, 1981.

[BM88] R. S. Boyer and J S. Moore. Integrating decision procedures
into heuristic theorem provers: A case study of linear

33

arithmetic. In Machine Intelligence 11, pages 83–124.
Oxford University Press, 1988.

[BM96] Bob Boyer and J Moore. Mechanized formal reasoning
about programs and computing machines. In R. Veroff,
editor, Automated Reasoning and its Applications, Essays
in Honor of Larry Wos. MIT Press, 1996.

[BN00] Stefan Berghofer and Tobias Nipkow. Proof terms for
simply typed higher order logic. In J. Harrison and
M. Aagaard, editors, Theorem Proving in Higher Order
Logics (TPHOLS ’00), volume 1869 of LNCS, pages 38–52.
Springer-Verlag, 2000.

[BN02] Stefan Berghofer and Tobias Nipkow. Executing higher
order logic. In Types for Proofs and Programs (Types ’00),
volume 2277 of LNCS, pages 24–40. Springer-Verlag, 2002.

[Bou92] Richard J. Boulton. Boyer-Moore automation for the HOL
system. In L. J. M. Claesen and M. J. C. Gordon, editors,
Higher Order Logic Theorem Proving and its Applications
(TPHOLS ’92), volume A-20 of IFIP Transactions, pages
133–142. Elsevier Science Publisher, September 1992.

[Bou93] Richard John Boulton. Efficiency in a Fully-Expansive
Theorem Prover. PhD thesis, University of Cambridge,
December 1993.

[BT00] Piergiorgio Bertoli and Paolo Traverso. Design verification
of a safety-critical embedded verifier. In Computer-Aided
Reasoning: ACL2 Case Studies, chapter 14. Kluwer
Academic Publishers, 2000.

[CC02] James L. Caldwell and John Cowles. Representing Nuprl
proof objects in ACL2: Toward a proof checker for Nuprl.
In Dominique Borrione, Matt Kaufmann, and J Moore,
editors, ACL2 ’02, April 2002.

[CN05] Amine Chaieb and Tobias Nipkow. Verifying and reflecting
quantifier elimination for Presburger arithmetic. In Logic

34

Programming, Artificial Intelligence, and Reasoning (LPAR
’05), volume 3835 of LNCS, pages 367–380. Springer-Verlag,
2005.

[Dav04] Jared Davis. Finite set theory based on fully ordered lists.
In Matt Kaufmann and J Moore, editors, ACL2 ’04,
November 2004.

[Dij82] Edsger W. Dijkstra. On the fact that the Atlantic Ocean
has two sides. In Selected writings on computing: a personal
perspective, pages 268–176. Springer-Verlag, 1982.

[DLP77] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis.
Social processes and proofs of theorems and programs. In
Principles of Programming Languages (POPL ’77), pages
206–214. ACM Press, 1977.

[Fef86] Solomon Feferman, editor. Kurt Gödel: Collected Works,
volume 1. Oxford University Press, 1986.

[Fet88] James H. Fetzer. Program verification: The very idea.
Communications of the ACM, 31(9):1048–1063, September
1988.

[GCM+05] Mike Gordon, Avra Cohn, Tom Melham, Konrad Slind,
Michael Norrish, and et al. The HOL system: Tutorial,
September 2005. For HOL Kananaskis-3.

[GH98] David Griffioen and Marieke Huisman. A comparison of
PVS and Isabelle/HOL. In Jim Gundy and Malcom Newey,
editors, Theorem Proving in Higher Order Logics (TPHOLS
’98), volume 1479 of LNCS, pages 123–142. Springer-Verlag,
September 1998.

[GM05] Benjamin Grégoire and Assia Mahboubi. Proving equalities
in a commutative ring done right in Coq. In J. Hurd and
T. Melham, editors, Theorem Proving in Higher Order
Logics (TPHOLS ’05), volume 3603 of LNCS, pages 98–113.
Springer-Verlag, 2005.

35

[Göd31] Kurt Gödel. Über formal unentscheidbare sätze der
Principia Mathematica und verwandter systeme I.
Monatshefte für mathematik und physik, 38:173–198, 1931.
English translation in [Fef86], pages 145–195: On formally
undecidable propositions of Principia Mathematica and
related systems I.

[Goe00] Wolfgang Goerigk. Compiler verification revisited. In
Computer-Aided Reasoning: ACL2 Case Studies,
chapter 15. Kluwer Academic Publishers, 2000.

[GWH00] David Greve, Matthew Wilding, and David Hardin.
High-speed, analyzable simulators. In Computer-Aided
Reasoning: ACL2 Case Studies, chapter 8. Kluwer
Academic Publishers, 2000.

[Har95] John Harrison. Metatheory and reflection in theorem
proving: A survey and critique. Technical Report CRC-053,
SRI Cambridge, Millers Yard, Cambridge, UK, 1995.

[Har96] John Harrison. HOL light: A tutorial introduction. In
M. Srivas and A. Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD ’96), volume 1166 of
LNCS, pages 265–269. Springer-Verlag, 1996.

[Har06] John Harrison. Towards self-verification of hol light. In
Ulrich Furbach and Natarajan Shankar, editors,
International Joint Conference on Automated Reasoning
(IJCAR ’06), volume 4130 of LNAI, pages 177–191.
Springer-Verlag, August 2006.

[HKK+05] Warren A. Hunt, Jr., Matt Kaufmann, Robert Bellarmine
Krug, J Moore, and Eric Whitman Smith. Meta reasoning
in ACL2. In J. Hurd and T. Melham, editors, Theorem
Proving in Higher Order Logics (TPHOLS ’05), volume
3603 of LNCS, pages 163–178. Springer-Verlag, 2005.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–583, October 1969.

36

[How88] Douglas J. Howe. Computational metatheory in Nuprl. In
E. Lusk and R. Overbeek, editors, Conference on
Automated Deduction (CADE ’88), LNCS, pages 238–257.
Springer-Verlag, March 1988.

[HR05] Warren A. Hunt, Jr. and Erik Reeber. Formalization of the
DE2 language. In Correct Hardware Design and Verification
Methods (CHARME ’05), volume 3725 of LNCS, pages
20–34. Springer-Verlag, 2005.

[HR06] Warren A. Hunt, Jr. and Erik Reeber. Applications of the
DE2 language. In Mary Sheeran and Tom Melham, editors,
Designing Correct Circuits (DCC ’06). ETAPS ’06, March
2006.

[Hun00] Warren Hunt, Jr. The DE language. In Computer-Aided
Reasoning: ACL2 Case Studies, chapter 10. Kluwer
Academic Publishers, 2000.

[KC86] Todd B. Knoblock and Robert L. Constable. Formalized
metareasoning in type theory. In Logic in Computer Science
(LICS ’86), pages 237–248. IEEE Computer Society, June
1986.

[KM94] Matt Kaufmann and J Moore. Design goals of ACL2.
Technical Report 101, Computational Logic, Inc., 1994.

[KM97] Matt Kaufmann and J Strother Moore. An industrial
strength theorem prover for a logic based on Common Lisp.
IEEE Transactions on Software Engineering, 23(4):203–213,
April 1997.

[KM98] Matt Kaufmann and J Strother Moore. A precise
description of the ACL2 logic, April 1998.

[KM07] Matt Kaufmann and J Moore. The ACL2 user’s manual,
2007. Version 3.2. Available online:
http://www.cs.utexas.edu/users/moore/acl2/v3-2/acl2-doc-
index.html.

37

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother
Moore. Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, June 2000.

[LM03] Hanbing Liu and J Strother Moore. Executable JVM model
for analytical reasoning: A study. In Interpreters, Virtual
Machines and Emulators (IVME ’03), pages 15–23, 2003.

[LM04] Hanbing Liu and J Strother Moore. Java program
verification via a JVM deep embedding in ACL2. In
Konrad Slind, Annette Bunker, and Ganesh
Gopalakrishnan, editors, Theorem Proving in Higher Order
Logics (TPHOLS ’04), pages 184–200, 2004.

[LP99] Leslie Lamport and Lawrence C. Paulson. Should your
specification language be typed? ACM Transactions on
Programming Languages and Systems (TOPLAS ’99),
21(3):502–526, May 1999.

[Mac01] Donald MacKenzie. Mechanizing Proof: Computing, Risk,
and Trust. The MIT Press, October 2001.

[McC60] John McCarthy. Recursive functions of symbolic
expressions and their computation by machine, part 1.
Communications of the ACM, 3(4):184–195, April 1960.

[Moo98] J Moore. Symbolic simulation: An ACL2 approach. In
G. Gopalakrishnan and P. Windley, editors, Formal Methods
in Computer-Aided Design (FMCAD ’98), volume 1522 of
LNCS, pages 334–350. Springer-Verlag, November 1998.

[MS00] William McCune and Olga Shumsky. Ivy: A preprocessor
and proof checker for first-order logic. In Computer-Aided
Reasoning: ACL2 Case Studies, chapter 16. Kluwer
Academic Publishers, 2000.

[MV06] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic:
Algorithms and mechanization. Journal of Automated
Reasoning, pages 1–37, 2006.

38

[MZ05] J Strother Moore and Qiang Zhang. Proof pearl: Dijkstra’s
shortest path algorithm verified with ACL2. In J. Hurd and
T. Melham, editors, Theorem Proving in Higher Order
Logics (TPHOLS ’05), volume 3603 of LNCS, pages
373–384. Springer-Verlag, 2005.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, Conference
on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752.
Springer-Verlag, June 1992.

[ORSSC98] S. Owre, J. M. Rushby, N. Shankar, and D. W. J.
Stringer-Calvert. PVS: An experience report. In Dieter
Hutter, Werner Stephan, Paolo Traverso, and Markus
Ullman, editors, Applied Formal Methods–FM-Trends 98,
volume 1641 of LNCS, pages 338–345. Springer-Verlag,
October 1998.

[OS06] Steven Obua and Sebastian Skalberg. Importing HOL into
Isabelle/HOL. In Ulrich Furbach and Natarajan Shankar,
editors, International Joint Conference on Automated
Reasoning (IJCAR ’06), volume 4130 of LNAI, pages
298–302. Springer-Verlag, August 2006.

[RF00] David M. Russinoff and Arthur Flatau. RTL verification: A
floating-point multiplier. In Computer-Aided Reasoning:
ACL2 Case Studies, chapter 13. Kluwer Academic
Publishers, 2000.

[RM05] Tom Ridge and James Margetson. A mechanically verified,
sound and complete theorem prover for first order logic. In
J. Hurd and T. Melham, editors, Theorem Proving in
Higher Order Logics (TPHOLS ’05), volume 3603 of LNCS,
pages 294–309. Springer-Verlag, 2005.

39

[RMT03] Sandip Ray, John Matthews, and Mark Tuttle. Certifying
compositional model checking algorithms in ACL2. In
ACL2 ’03, July 2003.

[RRAHMM04] J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, and F.-J.
Mart́ın-Mateos. A formally verified quadratic unification
algorithm. In Matt Kaufmann and J Moore, editors, ACL2
’04, November 2004.

[Rus98] David M. Russinoff. A mechanically checked proof of IEEE
compliance of a register-transfer-level specification of the
AMD-K7 floating-point multiplication, division, and square
root instructions. LMS Journal of Computation and
Mathematics, 1:147–200, December 1998.

[Saw00] Jun Sawada. Verification of a simple pipelined machine
model. In Computer-Aided Reasoning: ACL2 Case Studies,
chapter 9. Kluwer Academic Publishers, 2000.

[Sha94] N. Shankar. Metamathematics, Machines, and Gödel’s
Proof. Cambridge University Press, 1994.

[Sho67] Joseph R. Shoenfield. Mathematical Logic. The Association
for Symbolic Logic, 1967.

[Sli92] Konrad Slind. Adding new rules to an LCF-style logic
implementation: Preliminary report. In L. J. M. Claesan
and M. J. C. Gordon, editors, Higher Order Logic Theorem
Proving and its Applications (TPHOLS ’92), volume A-20
of IFIP Transactions. Elsevier Science Publisher, September
1992.

[SNG+04] Eric Smith, Serita Nelesen, David Greve, Matthew Wilding,
and Raymond Richards. An ACL2 library for bags. In Matt
Kaufmann and J Moore, editors, ACL2 ’04, November 2004.

[TB03] Diana Toma and Dominique Borrione. SHA formalization.
In ACL2 ’03, July 2003.

40

[TPG95] Cornell University The PRL Group. Implementing
mathematics with the Nuprl proof development system,
October 1995.

[vW94a] J. von Wright. The formal verification of a proof checker,
1994. SRI Internal Report.

[vW94b] J. von Wright. Representing higher-order logic proofs in
HOL. In Thomas F. Melham and Juanito Camilleri,
editors, Higher Order Logic Theorem Proving and Its
Applications (TPHOLS ’94), volume 859 of LNCS.
Springer-Verlag, September 1994.

[Won95] Wai Wong. Recording and checking HOL proofs. In
E. Thomas Schubert, Phillip J. Windley, and Jim
Alves-Foss, editors, Higher Order Logic Theorem Proving
and its Applications (TPHOLS ’95), volume 971 of LNCS,
pages 353–368. Springer-Verlag, September 1995.

41

	Introduction
	Sketch of our proposal
	Formal verification
	Our choice of logic
	Computers checking proofs
	Our proof checker
	Proof checker extensions
	Proposed extensions
	Using extensions

	Present and remaining work
	Sketch of our logic
	Our proof checker
	Building Proofp-checkable proofs
	Extending Proofp with a new rule
	Proving the new rule is sound
	Remaining work

	Related work
	Current theorem provers
	Embedded proof checkers
	Independent proof checking
	Meta reasoning

