
The Milawa Rewriter

and an ACL2 Proof of its Soundness

Jared Davis∗
The University of Texas at Austin
Department of Computer Sciences
1 University Station C0500
Austin, TX 78712-0233, USA
(jared@cs.utexas.edu)

October 5, 2007

Abstract. Rewriting with lemmas is a central strategy in interactive theorem
provers. We describe the Milawa rewriter, which makes use of assumptions, cal-
culation, and conditional rewrite rules to simplify the terms of a first-order logic.
We explain how we have developed an ACL2 proof showing the rewriter is sound,
and how this proof can accommodate our rewriter’s many useful features such
as free-variable matching, ancestors checking, syntatic restrictions, caching, and
forcing.

Keywords: ACL2, Milawa, theorem proving, verified rewriter

1. Introduction

We are developing a new automated theorem prover called Milawa.
Our program follows the ACL2 [10] tradition: it is an interactive tool
rather than a fully-automatic decision procedure, and it can be used
to prove properties of purely-functional Lisp programs. Other discrete
systems, ranging from circuits [9] to Java programs [11], can be ana-
lyzed using Lisp models. A major goal in our work is for Milawa to
be a mechanically-verified theorem prover. Pursuing this goal, we have
used ACL2 to prove Milawa’s rewriter is sound.

Rewriting with lemmas is the driving force in this style of theorem
proving. When a user begins working on a new theorem, she typi-
cally provides a bit of guidance—“induct this way”, or “consider these
cases”—then turns the problem over to the rewriter. The rewriter uses
libraries of reusable rules (each of which has been proven earlier) to
simplify the resulting cases. Some cases will be proven outright, and
she can inspect the rest to decide which additional lemmas or hints are
needed. Over time, her library of lemmas becomes a potent strategy
for reasoning in her problem domain.

∗ This work was supported by NSF Grant CNS-0429591.

rewrite.tex; 3/07/2009; 9:48; p.1



2

Our rewriter makes use of an assumptions system for keeping track
of what is known, an evaluator for simplifying ground terms, and con-
ditional rewrite rules whose hypotheses are relieved via backchaining
(goal-directed, recursive rewriting). Our rewriter has many useful fea-
tures: backchaining loops are prevented using a heuristic “ancestors
check” which is adapted from ACL2’s rewriter; when free variables are
encountered in a rule’s hypotheses, the assumptions system identifies
potential matches; rule application can be syntactically restricted; re-
sults are cached so we do not repeatedly rewrite a commonly-occurring
subterm or hypothesis; and hypotheses can be “forced” so they do not
have to be established through rewriting alone.

Our rewriter is not as powerful as ACL2’s, which makes use of a
type reasoning system, an arithmetic procedure [8], metafunctions [7],
and congruence rules for generalized equivalence relations. But neither
is it a toy. We are now using it to verify some extended proof techniques
for Milawa, and this effort currently includes some two thousand lem-
mas. Many of our rewriter’s features (free variable matching, caching,
forcing, etc.) were implemented to make the rewriter powerful enough
to support this effort.

What does it mean when we say our rewriter is sound? Among other
inputs, our rewriter takes x, a term to rewrite; assms, the assumptions
to use; and ≡, the equivalence relation to preserve (equality or Boolean
equivalence). It returns a new term, x′, which is a hopefully-simplified
replacement for x. We say our rewriter is sound if, for any choices of
x, assms, and ≡, it is possible to prove assms → x ≡ x′ in the Milawa
logic. This statement mentions provability, so it is a metatheorem from
the perspective of the Milawa logic. Our approach is to prove it using
ACL2 as a metalogic: we define a Milawa-logic proof checker as an
ACL2 function, and implement our rewriter as another ACL2 function;
from ACL2’s perspective, our soundness claim is just a regular theorem
about these two Lisp programs, and there is nothing “meta” about it.

To structure our proof we introduce traces, which record at a high
level how terms were rewritten. For example, one step in a trace might
say, “The subterm y was rewritten to y′ by applying the rewrite rule
r, whose hypotheses were relieved as recorded by these subtraces.”
Traces allow us to break our soundness proof into two phases: first we
show that any valid trace can be compiled into a Milawa proof which
establishes assms → x ≡ x′, then we show our rewriter always produces
a valid trace. This decoupling has allowed us to implement many of our
rewriter’s features without substantially altering its proof of soundness.
Also, much of our proof should be directly reusable when implement-
ing new rewriters that employ different strategies (e.g., outside-in vs.
inside-out rewriting).

rewrite.tex; 3/07/2009; 9:48; p.2



3

In this paper, we first explain how we can introduce Milawa-logic
provability as a concept in ACL2 (Sec. 2). We then discuss the as-
sumptions system (Sec. 3) and the evaluator (Sec. 4) which are used
by our rewriter. Next, we describe traces (Sec. 5) and explain how the
rewriter builds them (Sec. 6). After that, we mention several of our
rewriter’s features (Sec. 7) and cover how they are useful, how they
are implemented, and how they affect our soundness proof. Lastly, we
remark upon some related work (Sec. 8) and conclude (Sec. 9).

2. Defining Provability

The Milawa logic can be used to reason about simple Lisp programs.
The objects are the natural numbers, symbols and (recursively) ordered
pairs. Structures like lists, maps, aggregates, and trees are represented
by layering pairs. Computation is expressed with terminating, recursive
functions defined atop Lisp primitives like if , equal , cons, car , and +.
The terms of the logic are constants, variables, function applications,
and let-like lambda abbreviations. The atomic formulas are equalities
between terms, and compound formulas are formed with negation and
disjunction. There are some rules of inference such as instantiation and
cut, and the behaviors of primitive Lisp functions are described with
axioms such as car(cons(x, y)) = x.

To develop a proof checker for Milawa in ACL2, we introduce a
simple Lisp-like encoding of the Milawa terms. We extend this encoding
to include formulas, and represent Milawa proofs as trees of proof steps.
Each proof step includes a method and conclusion, and perhaps some
subproofs and extras. The method names the inference rule being used,
e.g., “cut”, while the conclusion is the formula proved by this step.
The subproofs are needed to justify non-axiom steps, and the extras are
sometimes needed to provide additional information, e.g., instantiation
steps require a substitution list.

Our proof checker is an ACL2 function which inspects all the steps
in a proof for validity. As an example of what this entails, Milawa’s
instantiation rule allows us to prove A/σ given a proof of A (where A
is understood to be a formula, σ is a substitution list, and A/σ denotes
the result of applying σ to A). So, a proof step of the “instantiation”
method is valid only if:

− its subproofs contain a single proof, call its conclusion A;

− its extras are a substitution list, call it σ; and

− its conclusion is the formula A/σ.

rewrite.tex; 3/07/2009; 9:48; p.3



4

We call our proof checker Proofp, which is short for “proof predicate”
in the Lisp tradition. After implementing our proof checker, we can
define Milawa-logic provability as an ACL2 concept: the formula φ is
provable if there exists an object, p, that Proofp accepts and whose
conclusion is φ.

3. The Assumptions System

Our rewriter takes part in a larger strategy for proving theorems in
Milawa: to prove a new formula, we first coerce it into conjunctive
normal form and try to prove each of the resulting clauses. To prove a
clause, L1 ∨ . . . ∨ Ln, we try to show that at least one Li is true. To
show Li is true, we first rewrite it to Li

′, then see if the truth of Li
′ is

evident1.
Since our goal is to show at least some literal is true, we can freely

assume the other literals are false as we rewrite Li. These assumptions
are quite important. For example, suppose our clause is ¬x ∨ x. As we
rewrite the first literal, ¬x, we can assume the second literal, x, is false.
Then ¬x rewrites to ¬false, which we can see is true. If we had not
considered the other literals, we would not have been able to simplify
x or ¬x to prove the clause.

The simplest way to record our assumptions would be to keep them
in a list. Then, each time we were rewriting a subterm, we could consult
our list to see if this subterm was known to be true or false. But this
approach would not be very powerful. For example, suppose we knew
the subsetp function was reflexive, expressed as the rewrite rule,

subsetp(x, x) 7→ true,

which denotes “terms matching subsetp(x, x) may be rewritten to true.”
Further suppose we were trying to rewrite subsetp(t1, t2) after assuming
that t1 = t2 was true. Since the subterm “t1 = t2” does not literally
occur anywhere within the term we are rewriting, we would not use
our assumption and our rule would not match. Instead, we would
like to canonicalize t2 to t1 so that subsetp(t1, t2) can be rewritten
to subsetp(t1, t1), which our rule can match.

To address this, we store assumptions in an assumptions structure.
These structures still keep a list of the terms we have assumed, but
also store databases of inferred facts. For example, when we assume

1 Our literals actually have the form term = false. So, for example, if Li rewrites
to false = false, we know it is true; if it rewrites to 5 = false, we know it is false; if
it rewrites to x = false or foo(x) = false, its truth is not evident.

rewrite.tex; 3/07/2009; 9:48; p.4



5

t1 = t2, a disjoint-set structure for equalities is updated. Now, when
the rewriter asks the assumptions system if it can simplify t2, our find
operation will canonicalize t2 to t1. If we additionally infer t2 = t3, the
structure is updated with an appropriate union so that both t2 and t3
may be canonicalized to t1. A similar structure is used to record and
propagate Boolean equivalences.

Since the rewriter can use assumptions to simplify a term, the sound-
ness of the rewriter depends upon the soundness of the assumptions
system. This is not trivial, but in this paper we want to focus on the
rewriter’s soundness proof instead. In brief, our tables are composed
of assumption traces which are similar to the rewriter traces which
will be described in Sec. 5. Each trace includes enough information
to see which assumptions justify its conclusion, and we have defined
a compiler which can translate these traces into a Proofp-acceptable
proof of assms → x ≡ x′, where assms are the terms we have explicitly
assumed and x ≡ x′ is the fact we have inferred. Finally, as in our
proof of the rewriter, we show that our assumption-making code adds
only valid traces to our tables, so everything we have inferred can be
justified using our compiler.

With enough work it would be possible to add other kinds of forward-
direction reasoning, e.g., a type reasoning system, or a database of
inequalities for an arithmetic procedure. We have not yet needed these
kinds of features in the proofs we are working on, so we have not
implemented them. It is tempting to think, “we should be inferring
more,” since a more intelligent assumptions system may be able to
lend greater assistance to the rewriter. But maintaining and consulting
tables of inferences does take time, and we do not want to impede the
rewriter by inferring lots of facts that it will never use.

As a final note, the clause is not the only source of assumptions.
Our rewriter may encounter conditional expressions of the form,

if (x, y, z) =
{
y if x is true, or
z otherwise.

Here, we can locally assume x is true as we recursively rewrite y, and
similarly we can assume x is false as we rewrite z. Other typical control-
flow operations, like and and or , are abbreviations defined in terms of
if . So, for example, when we are rewriting or(x, y), we can assume x
is false while rewriting y.

rewrite.tex; 3/07/2009; 9:48; p.5



6

4. The Evaluator

In addition to the assumptions system, our rewriter is supported by an
evaluator which can simplify ground terms. Our evaluator is similar to
McCarthy’s [12] apply function. As inputs, it takes a ground term to
evaluate, a database of function definitions, and a stack-depth counter
to ensure termination. It produces an encoded constant when evalua-
tion is successful, or false2 if an error such as a stack overflow occurs.
These errors are propagated, e.g., if our attempt to evaluate ai has
produced false, then f(a1, . . . , an) will also evaluate to false.

The evaluator has cases for constants, variables, function applica-
tions, and lambda abbreviations. Constants always evaluate to them-
selves, while variables always fail to evaluate since only ground terms
(i.e., variable-free terms) can be evaluated. Arguments to most func-
tions are evaluated eagerly, but like Lisp we lazily evaluate the argu-
ments to if (hence also and and or). Without this laziness, recursive
functions like

length(x) = if (consp(x), 1 + length(cdr(x)), 0)

would cause a stack overflow.
Our rewriter makes use of evaluation, so before we can prove our

rewriter is sound, we must first be able to justify the evaluator’s oper-
ation in the Milawa logic. We have proven, in ACL2:

Suppose all the defs are axioms.
Suppose eval(x, defs, depth) successfully evaluates to x′.
Then x = x′ is provable in the Milawa logic.

To do this, we developed an “evaluator builder” function, which takes
the same arguments as the evaluator, and builds a Proofp-checkable
proof of x = x′. The constant case is easy to justify: since constants
always evaluate to themselves, the conclusion is x = x, which is prov-
able since equality is reflexive. The variable case is also trivial: since
evaluating a variable is an error, the “eval(x, defs, depth) successfully
evaluates” hypothesis is false, and the conjecture is vacuously true.
But how can our compiler justify the use of function definitions? Sup-
pose we have recursively evaluated the arguments to a function, and
have recursively built proofs of a1 = a1

′, etc. Our first step is to use
the following axiom schema, which holds since our language is purely
functional:

2 This is unambiguous since false does not represent any term in our encoding.

rewrite.tex; 3/07/2009; 9:48; p.6



7

a1 = a1
′

. . .
an = an

′

f(a1, . . . , an) = f(a1
′, . . . , an

′)

Now we turn our attention to simplifying f(a1
′, . . . , an

′). At this point,
all the ai

′ are constants. The Milawa logic includes a small set of base
functions such as consp, cons, car, +, and −, and provides an axiom
schema which allows us to prove these functions, applied to constants,
produce the appropriate value. For example, cons(1, 2) = 〈1, 2〉 is
provable in one step by base evaluation. But we also need to justify
the evaluation of defined functions. Here, we begin with the axiom
for the function’s definition, e.g., f(x1, . . . , xn) = body . We instantiate
this with the substitution σ = [x1 ← a1

′, . . . , xn ← an
′], producing

f(a1
′, . . . , an

′) = body/σ. Since body may only mention the variables
x1, . . . , xn, body/σ is a ground term, and we recursively evaluate it
to obtain our final result; this recursion is well-founded because we
decrease the depth parameter. In the end, we have shown:

f(a1, . . . , an) = f(a1
′, . . . , an

′) = body/σ = result .

The case for lambda abbreviations is similar. We show the actuals can
be simplified in place, then perform beta reduction and recursively
evaluate the result.

5. Rewriter Traces

Until now, we have suggested our rewriter takes an input term, x, and
returns the simplified term, x′. Actually, it returns a trace explaining
how x was rewritten, and x′ is only one component of this trace. A
rewriter trace is a tree of steps. Each step is an aggregate which includes
a method explaining what kind of step it is, the assms structure it
used, an lhs and rhs (the input and output terms, respectively), the ≡
being maintained, some subtraces if necessary, and any extras needed
to justify the step. Each trace stands for the formula,

[assms →] lhs ≡ rhs,

where the brackets indicate assms might be empty.
We currently support the fifteen types of trace steps presented in

Figures 1 and 2. These traces have two important attributes. First, we
can compile them into Milawa-logic proofs which can be accepted by

rewrite.tex; 3/07/2009; 9:48; p.7



8

Proofp. Second, they form a convenient basis for rewriting. For example,
our rewriter’s handling of if (x, y, z) can probably be inferred by looking
at the different ways we can build traces for if -expressions.

Compiling trace steps can be tedious. Even for something as simple
as transitivity, we have four cases—there may or may not be assms,
and the equivalence may be = or iff . In each case, our compiler needs
to be able to build a Proofp-checkable proof of x ≡ z. These proofs can
be difficult to build since the Milawa logic, like most logics, provides
only very basic rules of inference. For example, “Modus Ponens” is not
a one of our rules, and emulating it takes us 5 basic steps when assms
are empty, or 14 basic steps when they are non-empty.

For each kind of trace step, we write a step compiler to build proofs
of the step’s conclusion from proofs of its premises. For example, the
transitivity-step compiler can build a proof of [assms →] x ≡ z from
proofs of [assms →] x ≡ y and [assms →] y ≡ z. We combine these
step compilers into a whole-trace compiler, which recurs through the
trace and applies the appropriate step compiler on each step. This is the
only place where we need to consider all the different kinds of traces,
and it is easy to verify our whole-trace compiler using the lemmas we
proved for each step compiler. A nice feature of this design is that new
kinds of traces can be added without having to change and re-verify
the existing step compilers: only the proof of the whole-trace compiler
needs to be updated, and this update is trivial once the soundness of
the new step has been established.

6. The Rewriter

The primary inputs of our rewriter are the term to rewrite, the assump-
tions structure being used, and the equivalence relation to maintain
(equality or Boolean equivalence). Other inputs include the rewrite
rules and function definitions to use, counters to ensure termination,
and various control parameters like whether to beta-reduce λ-abbreviations.

The rewriter has base cases for constants and variables, and recursive
cases for if -expressions, not-expressions, other function applications,
and λ-abbreviations. It operates in an inside-out fashion, so to rewrite
f(a1, . . . , an) we first rewrite a1, . . . , an to a1

′, . . . , an
′, then try to ad-

dress f(a1
′, . . . , an

′). This process is iterated until a fixed point or an
artificial limit is reached.

As examples of how the rewriter builds its traces, we will now con-
sider one base case (constants) and one recursive case (functions other
than if and not) in detail. We will ignore considerations like caching,

rewrite.tex; 3/07/2009; 9:48; p.8



9

Failure

[assms →] x ≡ x

If, false case
[assms →] x1 iff false
[assms →] z1 ≡ z2

[assms →] if (x1, y1, z1) ≡ z2

If, true case
[assms →] x1 iff true
[assms →] y1 ≡ y2

[assms →] if (x1, y1, z1) ≡ y2

Not congruence
[assms →] x iff x′

[assms →] not(x) ≡ not(x′)

Equiv by args
[assms →] a1 = a1

′

. . .

[assms →] an = an
′

[assms →] f(a1, . . . , an) ≡ f(a1
′, . . . , an

′)

Transitivity
[assms →] x ≡ y
[assms →] y ≡ z

[assms →] x ≡ z

If, same case
[assms →] x1 iff x2

x2, assms → y ≡ w
¬x2, assms → z ≡ w

[assms →] if (x1, y, z) ≡ w

If, general case
[assms →] x1 iff x2

x2, assms → y1 ≡ y2
¬x2, assms → z1 ≡ z2

[assms →] if (x1, y1, z1) ≡ if (x2, y2, z2)

If-not normalization

[assms →] if (x, false, true) ≡ not(x)

Lambda equiv by args
[assms →] a1 = a1

′

. . .

[assms →] an = an
′

[assms →] (λx1 . . . xn . β) a1 . . . an ≡ (λx1 . . . xn . β) a1
′ . . . an

′

Beta reduction

[assms →] (λx1 . . . xn . β) a1 . . . an ≡ β/[x1 ← a1, . . . , xn ← an]

Figure 1. Basic Rewrite Traces

rewrite.tex; 3/07/2009; 9:48; p.9



10

Ground evaluation
(Where lhs evaluates to rhs)

[assms →] lhs ≡ rhs

Rule application
(Justified by a rewrite rule)

[assms →] hyp1 iff true
. . .

[assms →] hypn iff true

[assms →] lhs ≡ rhs

Assumptions
(Justified by an assumption)

[assms →] lhs ≡ rhs

Forcing
(Must be justified later)

[assms →] lhs iff true

Figure 2. Advanced Rewrite Traces

ancestors checking, backchain limits, and free-variable matching in this
discussion. For a constant, c:

− If we are maintaining equality, we cannot simplify c and we gen-
erate a Failure trace concluding c = c.

− Otherwise we are maintaining Boolean equivalence. In Milawa (and
analogous to Lisp) all constants other than false are considered to
be true. If our input is true or false, we cannot simplify it and we
return a Failure trace. Otherwise, we generate an Evaluation trace
which handles the canonicalization and concludes c iff true.

For functions other than if and not , say f(a1, . . . , an):

− We recursively rewrite each ai to ai
′, maintaining equality. We

combine these traces into an Equiv by args trace which estab-
lishes f(a1, . . . , an) ≡ f(a1

′, . . . , an
′). This is the beginning of an

“evolving” trace which we try to strengthen as described below.

− We first try evaluation. If each ai
′ is a constant, then f(a1

′, . . . , an
′)

is a ground term and we try to evaluate it. If this is successful,
we build an Evaluation trace showing f(a1

′, . . . , an
′) ≡ result . We

combine this with our Equiv by args trace using Transitivity to con-
clude f(a1, . . . , an) ≡ result . Since Evaluation traces ensure their
result is canonical, we return early without trying to strengthen
this trace further.

− Otherwise we try rewriting with rules. We can efficiently look up
the rules about the function f , and we try to match each of these
against f(a1

′, . . . , an
′). If we find a matching rule, we instantiate

rewrite.tex; 3/07/2009; 9:48; p.10



11

each of its hypotheses with the unifying substitution and try to
rewrite them all to true. If this is successful, we can build a Rule
application trace showing f(a1

′, . . . , an
′) ≡ result , and use Transi-

tivity to conclude f(a1, . . . , an) ≡ result . We are not sure the result
is canonical, so we continue.

− We now try assumptions. If progress is possible, we use Transitivity
to extend the evolving trace with an Assumptions trace.

− Finally, we decide if another pass is needed. If we have applied
rules or assumptions, more simplification might be possible, so we
recursively rewrite our most-reduced term and extend our evolving
trace with the result.

There are many details here, but for the soundness proof we only
need to establish that each time we build a trace, it is done according
to one of the rules laid out in Figures 1 and 2. Since we sometimes
build traces using recursively-constructed subtraces, this proof is by
induction and follows the recursive structure of our rewriter.

7. Rewriter Features

We now take a quick tour of our rewriter’s features, and how their
implementation affects our proof of soundness.

7.1. The “Ancestors Check” Heuristic

To prevent certain kinds of backchaining loops, our rewriter incorpo-
rates the “ancestors check” heuristic used by ACL2’s rewriter. To see
how these loops can occur, consider the following rewrite rule about
listp, a function for recognizing “proper” lists,

[listp(cdr(x))]⇒ listp(x) 7→ true,

which denotes “terms matching listp(x) may be rewritten to true, pro-
vided that the hypothesis, listp(cdr(x)), holds.” We call this kind of
rule a pump since it can lead us to consider a sequence of “inflating”
terms. For example, if we use our rule to rewrite listp(t1), we will need
to show listp(cdr(t1)). But our rule matches this as well; if we use it
again we will need to show listp(cdr(cdr(t1))), and so on.

This kind of looping tends to be expensive and useless, and we would
like to avoid it. We do this by maintaining an ancestors stack. Each time
we backchain to relieve a new hypothesis, h, we push h onto the stack
along with some other information about the rule being used. We do not

rewrite.tex; 3/07/2009; 9:48; p.11



12

allow backchaining to occur if the new hypothesis looks heuristically
worse than some previously-attempted hypothesis considered to be “on
behalf of” this rule.

Since the ancestors check is only used to decide whether to backchain,
there is no soundness burden associated with it. We were able to imple-
ment the check with only minimal updates to our soundness proof (e.g.,
adding the extra ancestors stack argument to all calls of the rewriter).

7.2. Free-Variable Matching

A typical example of a rule with free variables is a transitivity rule. For
example, the transitivity of subsetp is the following rule:

[subsetp(x, y), subsetp(y, z)]⇒ subsetp(x, z) 7→ true.

The variable y does not occur in the rule’s pattern, subsetp(x, z), so
it will not be bound in the substitution created by matching this pat-
tern against terms to rewrite. For example, suppose we have assumed
subsetp(t1, t2) and subsetp(t2, t3) and we are rewriting subsetp(t1, t3).
When we match subsetp(x, z) against subsetp(t1, t3), it only produces
the substitution [x← t1, z ← t3]. If we try to use this substitution di-
rectly, we will obtain the unrelievable hypotheses subsetp(t1, y) and
subsetp(y, t3). We need a mechanism for suggesting useful bindings for
y.

Here there is some tension. The rewriter will try to relieve the rule’s
hypotheses using every binding we suggest. This is potentially expen-
sive, so we want to suggest relatively few bindings. On the other hand,
if we fail to suggest a useful binding when there is one, the rule will
not be applied and we will fail to make progress. Our approach is fairly
conservative. For each free variable, v, we say the first hypothesis that
mentions v is suggestive, and we try all the bindings which, in a fairly
trivial way, can be sure to satisfy all the suggestive hypotheses. To do
this, we ask our assumptions system for a list of all the terms which
are known to be true. We then try to match the suggestive hypotheses
against these terms, using the partial substitution as a constraint. At
the end of the process, all the bindings we suggest will be sure to satisfy
at least the suggestive hypotheses.

In our subsetp example, the only suggestive hypothesis is subsetp(x, y),
and the known-true terms are subsetp(t1, t2) and subsetp(t2, t3). We
try to match subsetp(x, y) against these terms under the substitution
[x← t1, z ← t3]. The works for the first term, subsetp(t1, t2), by binding
y to t2. But it fails for the second term, subsetp(t2, t3), since our partial
substitution requires x to match with t1. So in this example, the only
binding we suggest for y is t2.

rewrite.tex; 3/07/2009; 9:48; p.12



13

Adding free-variable matching to our rewriter was initially diffi-
cult. In ACL2, loops must be expressed as recursive functions, so each
loop in our rewriter (“rewrite each of these arguments”, “try each
of these rules”, “try each of these substitutions”, and “relieve each
of these hypotheses”) has a corresponding function which is part of
our mutually-recursive rewriter. We originally only considered a single
substitution for each rule, so we did not have the “try each of these
substitutions” loop. Adding this to our rewriter required an additional
case in all of our inductive proofs. But now that the loop is in place, we
could change the bindings we suggest without impacting the soundness
proof at all.

7.3. Syntactic Restrictions

Our rewrite rules may include syntaxp [7] style constraints on their
application. An associative and commutative function like addition
provides some good examples of how these restrictions can be useful:

− Without syntactic restrictions, the commutativity rule, x + y 7→
y + x, would cause a loop. We can fix this by requiring y to be
a syntactically smaller term than x, which allows us to normalize
the operand order.

− Similarly, the commutativity-two rule, x+ (y + z) 7→ y + (x+ z),
will not loop with itself if we require y to be syntactically smaller
than x. Combined with commutativity, this allows us to normalize
any right-associated sum.

− Adding the right-associativity rule, (x + y) + z 7→ x + (y + z),
allows us to normalize any sum regardless of how its operands are
associated.

− Adding the left-associativity rule, x + (y + z) 7→ (x + y) + z,
would loop with right-associativity. But if we require x and y to
be constants, this will only aggregate x and y when (x + y) can
be evaluated away to a new constant. For example, now we can
rewrite 1 + (2 + x) 7→ (1 + 2) + x 7→ 3 + x.

How do we determine if syntactic restrictions are satisfied? Suppose
we want to apply a rule with the substitution [x1 ← s1, . . . , xn ← sn].
The rule’s restriction, R, is a term which may only mention the xi (i.e.,
the variables from the rule). Recall that we have an encoding for terms,
and let psiq represent the constant which encodes si. Now R/[x1 ←
ps1q, . . . , xn ← psnq] is a ground term, and we say the restriction is
satisfied if this term evaluates to true. For example, suppose we are

rewrite.tex; 3/07/2009; 9:48; p.13



14

trying to apply commutativity, x+y 7→ y+x, to rewrite the term t1+t2.
The rule matches our term using the substitution [x← t1, y ← t2], and
the rule’s restriction is y <term x. Following the procedure above, we
evaluate pt2q <term pt1q, and we are allowed to apply the rule only if
the result is true.

Just as the ancestors check is only used to decide whether to backchain,
syntax restrictions are only used to decide whether to try to apply a
rule. Hence, supporting syntax restrictions does not appreciably impact
our soundness proof.

7.4. Rewriter Caching

Adding free-variable matching to our rewriter caused its performance
to degrade, but we were able to correct this by caching the results of
rewriting. We implement the cache using Boyer and Hunt’s [2] mem-
oization extension to ACL2. We have found that our caching scheme
usually provides a hit rate of about 10–30%, with arithmetic-oriented
proofs landing on the higher end of the range. The time savings is as
high as 50-60% on several of our slowest proofs.

Implicit in the word caching is the idea of transparency, i.e., using
a cache should not change the results of a computation. But in our
rewriter, this is a subtle matter. For example, to ensure our rewriter
terminates, we decrement a “backchain limit” counter each time we try
to relieve a hypothesis; once the counter is exhausted, backchaining is
not permitted. This counter ruins simple attempts to memoize calls of
the rewriter, e.g., just because we were able to show consp(t1) is true
with a backchain limit of 998 does not necessarily mean we can show
it with a backchain limit of 997. We are willing to sacrifice this degree
of transparency to obtain a much more effective cache.

The ancestors check requires more delicate handling. Ignoring the
ancestors stack would be dangerous: we might “poorly” rewrite x in a
context where we have many ancestor restrictions, then reuse this result
in a less-restricted context. To prevent this, we develop the notion of
an ancestors-limited rewrite. The idea is to identify which rewrites may
have run afoul of the ancestors check, so that we can avoid caching
them.

− An attempt to relieve a hypothesis is ancestors-limited if (1) the
ancestors check prevents it from being relieved, or if (2) it rewrote
to a non-constant and this rewriting was ancestors-limited.

− An attempt to apply a rule is ancestors-limited if all of the matches
we tried have failed, and at least one of them has an ancestors-
limited hypothesis.

rewrite.tex; 3/07/2009; 9:48; p.14



15

− An attempt to rewrite a term is ancestors-limited if (1) none of
the rules we attempted were successful, (2) at least one of them
was ancestors-limited, and (3) other simplification methods such
as evaluation and assumptions failed.

There are some limits to what we can cache. Recall that when we
encounter an expression of the form if (x, y, z), we assume x is true
while rewriting y, and we assume x is false while rewriting z. We did
not see a good way to use and extend our input cache while rewriting y
and z in this new context, so instead we create two temporary, initially-
empty caches—one for y and one for z—which we discard after y and
z have been rewritten.

Adding caching to our rewriter took some work. Our rewriter was
modified to take the cache as an additional argument, and now returns
three values: the trace, an updated cache, and an ancestors-limited flag.
We also had to add an invariant to our inductive proofs to ensure that
all the traces in the cache are valid, and that only valid traces are added
to the cache.

7.5. Forced Hypotheses

Before our rewriter can apply a conditional rewrite rule, it must show
that all of the rules’ hypotheses are true. Sometimes we think a particu-
lar hypothesis will always hold. For example, if we encounter factorial(x)
in a proof attempt, then we might reasonably expect x to be a natural
number instead of a pair or a symbol. Some logics could handle this with
a type system, but Milawa functions (like ACL2 functions) are untyped,
so this is not an option. Even in a typed logic, it may be difficult to
restrict the domains of functions to precisely the sensible inputs. For
example, in our work with verifying extended proof techniques, a new
technique is often valid only when certain formulas are present in our
list of axioms. This would be hard to encode as a type.

When we think a hypothesis should always hold, we add a force
annotation to it. Ordinarily, if we fail to rewrite a hypothesis to true,
the rewrite rule will not be applied since we were unable to justify
its application. But when we fail to relieve a forced hypothesis, we
“pretend” it can be rewritten to true anyway. Eventually we have to
come up with proofs to justify these pretended steps, but forcing allows
us to defer this justification until later.

This deferral is often useful. Upon seeing a forcibly-assumed hypoth-
esis, the user often realizes he has not properly stated his theorem. In
fact, he often needs to add the very hypothesis being forced to make his
conjecture true. Here the use of forcing provides nice feedback: if the
assumption had not been forced, he would first need to identify the rule

rewrite.tex; 3/07/2009; 9:48; p.15



16

which did not apply (which might not be easy) and then understand
why it did not apply. In other cases, the forcibly-assumed hypothesis
may indeed be true, but might not be provable using rewriting alone.
Now he has an opportunity to apply other techniques (e.g., induction,
generalization, etc.), or to strengthen his rule library as appropriate.

Adding forcing required some updates to our soundness proof. First
we extended our traces with Forcing steps, which simply record our
current assumptions and the term we are assuming to be true. Our
whole-trace compiler was updated to additionally require, as an input,
a list of proofs which establish all of the forced assumptions. Compiling
a Forcing step involves looking up the appropriate proof from this list.
Now, in addition to producing a simplified goal, rewriting a clause also
produces goals for all the forced assumptions.

8. Related work

Theorem provers have sometimes been extended with verified proof
techniques using reflection [5] principles. For example, Smith, et al [17]
have developed some custom routines for efficient, lightweight reason-
ing about multisets in ACL2; Chaieb and Nipkow [3] have written a
verified quantifier-elimination procedure for Presburger arithmetic in
Isabelle/HOL; and Grégoire and Mahboubi [4] have verified a procedure
for reasoning about equality between polynomials in commutative rings
in Coq. Our work is not reflective since we use ACL2 as a metalogic,
but otherwise it is quite similar to these efforts—we have a complex
proof procedure we want to trust, and we gain this trust by proving it
is sound with a mechanical theorem prover.

There have also been some non-reflective efforts to mechanically
verify theorem-proving algorithms. Shankar [16] used NQTHM to write
a proof checker for a first-order logic, and proved the soundness of a
tautology checker and some other routines with respect to this proof
checker. Ridge and Margetson [14] used Isabelle/HOL to write a first-
order theorem prover, and proved the program to be sound and com-
plete. Their program does some proof search, but they mention it is
not competitive with other resolution provers. McCune and Shum-
sky [13] used ACL2 to develop a verifier for proof objects emitted
by the resolution prover Otter. No attempt was made to verify Otter
itself (a complex C program), but the correctness of their verifier was
established with ACL2.

We are not aware of previous efforts to verify rewriters mechanically.
Ruiz-Reina et al [15] used ACL2 to investigate properties from the
theory of rewriting (confluence, normal forms, etc.), but this work was

rewrite.tex; 3/07/2009; 9:48; p.16



17

more about rewriting in the abstract than any particular implementa-
tion. In contrast, our work is about a practical rewriter whose features
are inspired by ACL2’s rewriter.

An alternative to verifying theorem-proving algorithms is to require
all proofs to be carried out using only primitive rules of inference.
Harrison [5] has a good treatment of how this has been made practical
(at least for expressive logics like higher-order logic) using the well-
known LCF approach: theorems are represented using an abstract data
type and may only be created with constructors corresponding to the
primitive inference rules; unverified programs can then be used to build
proofs by calling upon these constructors. Since the type system ensures
all theorem objects are created in valid ways, the intermediate proof
steps can be thrown away for space efficiency. But using only primitive
proof constructors may still impose a time penalty, e.g., Chaieb and
Nipkow report their verified procedure is some 200 times faster than an
equivalent, LCF-style solution. On the other hand, Boulton [1] describes
how separating proof search from construction can make LCF-style
theorem proving more time efficient, and taken together, our rewriter
and trace compiler actually resemble an LCF-style algorithm with this
separation.

Finally, some work has been done to verify proof checkers. J. von
Wright [18] used HOL to verify that an imperative implementation of a
proof-checker accepted only the valid proofs in higher-order logic. Also,
Harrison [6] has mimicked the implementation of HOL Light, an OCaml
program, as a HOL Light specification to show “something close to
the actual implementation of HOL” is sound. Verifying proof checkers
nicely complements our work: we are willing to trust our proof checker,
and are interested in verifying a more sophisticated proof technique.

9. Conclusions

We are now working towards recreating the ACL2 proof of our rewriter’s
soundness in a Proofp-checkable form. If we can do this, we will no
longer need to use ACL2 as a metalogic. Instead, we will have a Milawa-
logic proof of the Milawa rewriter’s soundness. We hope to use this
result in a reflective way to extend Proofp.

The rewriter itself is useful in this effort. Along with other tools, we
are using our rewriter (and our trace compiler) to “translate” the ACL2
lemma libraries we used into Proofp-acceptable objects. So far we have
translated some two thousand lemmas dealing with topics including
arithmetic; list and map utilities; the encoding of terms, formulas, and
proofs; substitution operations; our rules of inference; and our proof

rewrite.tex; 3/07/2009; 9:48; p.17



18

checker. We still need to translate the lemmas for our assumptions
system, evaluator, traces, and the rewriter itself.

For the most difficult lemmas we have translated, the resulting proof
object size is as many as one billion conses. Such proofs are near the
upper bound of our patience, taking as long as 45 minutes to check on
our development machine. Since these relatively simple proofs are so
large, and since our rewriter is a complex program with a non-trivial
soundness proof, it is difficult to imagine directly translating our ACL2
proof into a Proofp-checkable form.

Instead, we are now working to verify intermediate proof checkers
to raise our level of abstraction. For example, using Proofp we have
verified a “level-2” proof checker which extends Proofp with some new
propositional rules, e.g., Modus Ponens. Proofs written at the second
level are significantly smaller than proofs written for Proofp. (For one
example theorem, the level-2 proof was 84% smaller than the equivalent
Proofp-level proof, when measured by the number of conses it takes to
represent each proof object.) We hope to build a stack of these higher-
level proof checkers, each verified with the previous level, culminating
in a verified proof checker that can directly use our rewriter.

A current version of our source code may be downloaded from the
following web site:

http://www.cs.utexas.edu/users/jared/milawa/Web/

Acknowledgements

We would like to thank Matt Kaufmann and J Moore for many use-
ful discussions about rewriting, and Warren Hunt for assistance with
memoization.

References

1. Boulton, R. J.: 1993, ‘Efficiency in a fully-expansive theorem prover’. Ph.D.
thesis, University of Cambridge.

2. Boyer, R. S. and W. A. Hunt, Jr: 2006, ‘Function Memoization and Unique
Object Representation for ACL2 Functions’. In: ACL2 ’06.

3. Chaieb, A. and T. Nipkow: 2005, ‘Verifying and Reflecting Quantifier Elimina-
tion for Presburger Arithmetic’. In: Logic Programming, Artificial Intelligence,
and Reasoning (LPAR ’05), Vol. 3835 of LNCS. pp. 367–380.

4. Grégoire, B. and A. Mahboubi: 2005, ‘Proving Equalities in a Commutative
Ring Done Right in Coq’. In: J. Hurd and T. Melham (eds.): Theorem Proving
in Higher Order Logics (TPHOLS ’05), Vol. 3603 of LNCS. pp. 98–113.

rewrite.tex; 3/07/2009; 9:48; p.18



19

5. Harrison, J.: 1995, ‘Metatheory and Reflection in Theorem Proving: A Sur-
vey and Critique’. Technical Report CRC-053, SRI Cambridge, Millers Yard,
Cambridge, UK.

6. Harrison, J.: 2006, ‘Towards self-verification of HOL Light’. In: U. Furbach and
N. Shankar (eds.): International Joint Conference on Automated Reasoning
(IJCAR ’06), Vol. 4130 of LNAI. pp. 177–191.

7. Hunt, Jr, W. A., M. Kaufmann, R. B. Krug, J. Moore, and E. W. Smith: 2005,
‘Meta Reasoning in ACL2’. In: J. Hurd and T. Melham (eds.): Theorem Proving
in Higher Order Logics (TPHOLS ’05), Vol. 3603 of LNCS. pp. 163–178.

8. Hunt, Jr, W. A., R. B. Krug, and J. Moore: 2003, ‘Linear and Nonlinear Arith-
metic in ACL2’. In: D. Geist (ed.): Correct Hardware Design and Verification
Methods (CHARME ’03), Vol. 2860 of LNCS. pp. 319–333.

9. Hunt, Jr, W. A. and E. Reeber: 2005, ‘Formalization of the DE2 Language’.
In: Correct Hardware Design and Verification Methods (CHARME ’05), Vol.
3725 of LNCS. pp. 20–34.

10. Kaufmann, M., P. Manolios, and J. S. Moore: 2000, Computer-Aided Reason-
ing: An Approach. Kluwer Academic Publishers.

11. Liu, H. and J. S. Moore: 2004, ‘Java Program Verification via a JVM Deep
Embedding in ACL2’. In: K. Slind, A. Bunker, and G. Gopalakrishnan (eds.):
Theorem Proving in Higher Order Logics (TPHOLS ’04). pp. 184–200.

12. McCarthy, J.: 1960, ‘Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part 1’. Communications of the ACM 3(4), 184–195.

13. McCune, W. and O. Shumsky: 2000, ‘Ivy: A Preprocessor and Proof Checker
for First-Order Logic’. In: Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Publishers, Chapt. 16.

14. Ridge, T. and J. Margetson: 2005, ‘A Mechanically Verified, Sound and Com-
plete Theorem Prover for First Order Logic’. In: J. Hurd and T. Melham (eds.):
Theorem Proving in Higher Order Logics (TPHOLS ’05), Vol. 3603 of LNCS.
pp. 294–309.

15. Ruiz-Reina, J.-L., J.-A. Alonso, M.-J. Hidalgo, and F.-J. Mart́ın-Mateos: 2002,
‘Formal proofs about rewriting using ACL2’. Annals of Mathematics and
Artificial Intelligence 36(3), 239–262.

16. Shankar, N.: 1994, Metamathematics, Machines, and Gödel’s Proof. Cambridge
University Press.

17. Smith, E., S. Nelesen, D. Greve, M. Wilding, and R. Richards: 2004, ‘An ACL2
Library for Bags’. In: ACL2 ’04.

18. von Wright, J.: 1994, ‘Representing Higher-Order Logic Proofs in HOL’. In:
T. F. Melham and J. Camilleri (eds.): Higher Order Logic Theorem Proving
and Its Applications (TPHOLS ’94), Vol. 859 of LNCS.

rewrite.tex; 3/07/2009; 9:48; p.19



rewrite.tex; 3/07/2009; 9:48; p.20


