

Outline

* The Milawa logic

* A primitive proof checker

* An extended proof checker

* Soundness of the extended checker
* A reflection rule

* Pragmatics of building proofs

e Status and future directions

The Milawa Logic

* Goal: “a large subset” of the ACL2 logic

— No strings, characters, symbol packages, or complex
numbers, maybe not even rationals/negatives

* Terms are basically ACL2 expressions

- Constants, variables, and (recursively) functions
applied to other terms.

e Formulas are like in the ACL2 book

— Equalities between terms tl=t2
- Negations of formulas ~A

— Disjunctions of formulas AvB

The Milawa Logic: Primitive Rules

Propositional Axiom Schema ~AvA

Expansion Derive Bv A from A

Contraction Derive A fromAv A

Associativity Derive (AvB) v C fromAv (Bv C)
Cut Derive Bv C from AvBand ~Av C

Instantiation Derive A/ o from A

The Milawa Logic: Primitive Rules

Reflexivity Axiom

X=X
Equality Axiom

xl Z2ylv (x2 #y2v (xl #x2vyl =y2))
Functional Equality Axiom Schema

xl =yl vo2 Zy2v.(.Lvixn £yny
gedl o=yl .. yn))|..|)]

Induction Rule (haven't worked this out yet)

Reflection Rule (explained later)

The Milawa Logic: Lisp Axioms

t-not-nil t # nil

if-when-nil el = miby(if x y B2}= |2
if-when-not-nil x=nilv(ifxyz =y
definition-not (not x) = (if x nil t)

definition-implies (implies xy) = (if x ...)
definition-iff (iffxy—=-Cf e

equal-when-diff x =yv (equal xy) = nil

equal-when-same x Zyv(equalxy) =t

The Milawa Logic: Formal Proofs

* A Formal Proof of a formula F in theory T is a
rooted tree of formulas where:

— The formula at the root of the tree is F

- The formula at every leaf is a logical axiom or a non-
logical axiom of T

- The formula at every interior node, n, can be derived
by applying some primitive rule of inference to the
formulas of n's children

* Once we have exhibited a formal proof of Fin T,
we say that F is a theorem of T.

A Primitive Proof Checker

* Lisp representation of our terms, and formulas:

— termp is like pseudo-termp
- formulap uses keywords
(:pequal a b) for a=b
(:pnot A) for ~A
(:por AB) forAvB

e Terms and formulas are distinct

- Keyword symbols are not valid function symbols

A Primitive Proof Checker

* Appeals are our proof objects.
* They have the following structure:

(method conclusion [subgoals] [extras])

- method explains how the formula is justified
- conclusion is a formula which this appeal asserts

— subgoals is a list of appeals which justify the
conclusion, if needed by this method

- extras holds any additional information, e.g.,
substitution lists, if needed by this method

A Primitive Proof Checker

* We write functions to check each type of appeal.

* Note: only a local check — “assume subappeals”

(defun contraction-okp (x database arity-table)
(declare (ignore database arity-table))
(let ((method (get-method x))
(conclusion (get-conclusion Xx))
(subgoals (get-subgoals x))
(extras (get-extras x)))
(and (equal method :contraction)
(equal extras nil)
(equal (len subgoals) 1)
(Let* ((subgoal (first subgoals))
(subconc (get-conclusion subgoal)))
(and (equal (first subconc) :por)
(equal (second subconc) conclusion)
(equal (third subconc) conclusion))))))

A Primitive Proof Checker

* We can then locally check any type of appeal by
combining the checkers in the natural way:

* This basically just emulates a virtual function

call in an inheritance hierarchy

(defun appeal-provisionally-okp (x database arity-table)

(case (get-method x)
(:axiom (axiom-okp
:propositional-schema (propositional-schema-okp

(

(:functional-equality (functional-equality-okp
(:expansion (expansion-okp
(:contraction (contraction-okp
(:associativity (associativity-okp

(:cut (cut-okp

(:instantiation (instantiation-okp

(otherwise nil)))

X X X X X X X X

database
database
database
database
database
database
database
database

arity-table))
arity-table))
arity-table))
arity-table))
arity-table))
arity-table))
arity-table))
arity-table))

A Primitive Proof Checker

* The full proof checker itself just extends this
local check everywhere throughout the tree

(mutual-recursion

(defun proofp (x database arity-table)
(and (appealp x arity-table)
(appeal-provisionally-okp x database arity-table)
(proof-listp (get-subgoals x) database arity-table)))

(defun proof-listp (xs database arity-table)
(1f (consp xs)
(and (proofp (car xs) database arity-table)

(proof-listp (cdr xs) database arity-table))
(equal xs nil))))

An Extended Proof Checker

* Commute Or Derive BVvA fromAv B

(defun commute-or-okp (x database arity-table)
(declare (ignore database arity-table)))
(let ((method (get-method x))
(conclusion (get-conclusion Xx))
(subgoals (get-subgoals x))
(extras (get-extras x)))
(and (equal method :commute-or)
(equal extras nil)
(equal (len subgoals) 1)
(Llet* ((subgoal (first subgoals))
(subconc (get-conclusion subgoal)))
(and (equal (first subconc) :por)
(equal (first conclusion) :por)
(equal (second conclusion) (third subconc))
(equal (third conclusion) (second subconc)))))))

An Extended Proof Checker

* We add this rule to create proofp-2

(defund appeal-provisionally-okp-2 (x database arity-table)
(case (get-method x)
(:commute-or (commute-or-okp x database arity-table))
(otherwise (appeal-provisionally-okp x database
arity-table))))

(mutual-recursion

(defund proofp-2 (x database arity-table)
(and (appealp x arity-table)
(appeal-provisionally-okp-2 x database arity-table)
(proof-listp-2 (get-subgoals x) database arity-table)))

(defund proof-listp-2 (xs database arity-table)
(1f (consp xs)
(and (proofp-2 (car xs) database arity-table)
(proof-listp-2 (cdr xs) database arity-table))
(equal xs nil))))

The Extended Checker is Sound

* We say a formula F is provable when there
exists a formal proof of F.

(defun-sk provablep (formula database arity-table)
(exists proof
(and (proofp proof database arity-table)
(equal (get-conclusion proof) formula))))

* We will show that whenever proofp-2 accepts an
appeal X, then the conclusion of X is provable.

— Consequence: if proofp is sound, then so is proofp-2.

The Extended Checker is Sound

* The following lemma is not too difficult to
prove:

(defthm soundness-of-appeal-provisionally-okp
(i1mplies (and (appealp x arity-table)
(appeal-provisionally-okp x database arity-table)
(provable-listp (strip-conclusions (get-subgoals x))
database arity-table))
(provablep (get-conclusion x) database arity-table)))

* With that in place, we mainly just need:

(defthm soundness-of-commute-or-okp
(implies (and (appealp x arity-table)
(commute-or-okp x database arity-table)
(provable-listp (strip-conclusions (get-subgoals x))
database arity-table))
(provablep (get-conclusion x) database arity-table)))

The Extended Checker is Sound

* Derivation of Commute Or

1. Av B Given
2. ~A v A Propositional Axiom
e BaviiA Cut; 1152

* Magic compiler based on this derivation

(defun magic-compiler (x database arity-table)
(let* ((or-a-b (get-conclusion (first (get-subgoals x))))
(or-a-b-proof (provablep-witness or-a-b database
arity-table))
(a (second or-a-bh)))
(cut or-a-b-proof
(propositional-schema a))))

The Extended Checker is Sound

(defthm get-conclusion-of-magic-compiler
(implies (and (appealp x arity-table)
(commute-or-okp x database arity-table)
(provable-listp (strip-conclusions (get-subgoals x))
database arity-table))
(equal (get-conclusion
(magic-compiler x database arity-table))
(get-conclusion x))))

(defthm proofp-of-magic-compiler
(i1mplies (and (appealp x arity-table)
(commute-or-okp x database arity-table)
(provable-listp (strip-conclusions (get-subgoals x))
database arity-table))
(proofp (magic-compiler x database arity-table)
database arity-table)))

(defthm soundness-of-commute-or-okp
(1mplies (and (appealp x arity-table)
(commute-or-okp x database arity-table)
(provable-listp (strip-conclusions (get-subgoals x))
database arity-table))
(provablep (get-conclusion x) database arity-table)))

The Extended Checker is Sound

(defthm soundness-of-appeal-provisionally-okp-2
(1mplies (and (appealp x arity-table)
(appeal-provisionally-okp-2 x database arity-table)
(provable-listp (strip-conclusions (get-subgoals x))
database arity-table))
(provablep (get-conclusion x) database arity-table)))

(defthm crux
(1f (equal flag :proof)
(i1mplies (proofp-2 x database arity-table)
(provablep (get-conclusion x) database arity-table))
(implies (proof-listp-2 x database arity-table)
(provable-listp (strip-conclusions x) database
arity-table))))

(defthm proofp-2-is-sound
(implies (proofp-2 x database arity-table)
(provablep (get-conclusion x) database arity-table)))

The Extended Checker is Sound

* So we have an ACL2 proof that proofp-2 is
sound with respect to proofp.

— But this is not “formal” in the sense of proofp

* Goal: translate this into a proofp-checkable
proof.

— The ACL2 proof is a “roadmap” of useful lemmas to
prove.

— Now we just need to be able to construct these
proofs. (more on this soon)

Adding a Reflection Rule

* Assume we have a proofp-checkable proof that
proofp-2-is-sound.

* Assume we have used proofp-2 to “prove” F.

* How do we get a formal proofp proof of F?

— We could skip this, claim that proofp-2-is-sound is
convincing enough

— We could try to “compile” the proof
* It might be too large to check
— We could add a reflection rule

Adding a Reflection Rule

* The reflection rule will be something like this:

Derive F from (provablep F ...) =t

* Now, if we know proofp-2 proves F, we can:

— Show that F is provable, by appealing to the lemma:

(defthm proofp-2-is-sound
(implies (proofp-2 x database arity-table)
(provablep (get-conclusion x) database arity-table)))

— Use reflection to conclude that F is true, since it is
provable

Pragmatics of Building Proofs

* Formal proofs are too big to create by hand, so I
write functions to build them for me.

e These are like derived rules of inference

(defun commute-or-bldr (x)
;; Derive b v a from a proof of a v b.

;; Derivation.

Skl sisatassh Given

s 2. ~aja Propositional Axiom
PR R o BB Cut; g2

(or (and (appeal-structureishp x)
(let* ((or-a-b (get-conclusion-fast x))
(a (second or-a-b)))
(and (equal (first or-a-b) :por)
(cut x (propositional-schema a)))))
(cw "[commute-or-bldr]: invalid argument: ~%~x0~%" Xx)))

(defun right-expansion-bldr (x b)
;; Derive (a v b) from a proof of a
;; Derivation.

shliola Given
see2nsbi v a Expansion; 1
reeditat v b Commute Or; 2

(or (and (appeal-structureishp x)
(formula-structurep b)
(commute-or-bldr (expansion b x)))
(cw "[right-expansion-bldr]: invalid args: ~%~x0~%~x1~%" X b)))

(defun modus-ponens-bldr (x y)
;; Derive b from proofs of a and ~a v b.

:: Derivation.

e oot Given

;7 2.avb Right Expansion; 1
;3 3. ~avb Given

;5 4. bvb Cuit:5.2.-8

S50 b Contraction; 4

(or (and (appeal-structureishp x)
(appeal-structureishp y)

(let* ((a (get-conclusion-fast x))
(or-not-a-b (get-conclusion-fast y))
(not-a (second or-not-a-b))
(b (third or-not-a-b)))
(and (equal (second not-a) a)
(contraction

(cut (right-expansion-bldr x b)

y)))))
(cw "[modus-ponens-bldr]: invalid args:~%~x0~%~x1~%" X y)))

» Derive
» Derive
» Derive
» Derive
» Derive
» Schema:
» Derive
» Schema:
: Schema:
» Derive
» Derive
: Derive
: Derive
» Derive
» Derive
» Derive
» Schema:
» Schema:
» Derive
» Schema:
» Derive
; Schema:
» Derive
: Derive
» Derive
: Derive
» Derive
» Derive
: Derive
» Derive
» Derive
» Derive

av (cvb) from a proof of a v b

av (bvc) from a proof of av b
avbfromav (bvb)

av (bvc) from (av b) vc

~(avb) vc from~avecand-~bvc
~(avb)v (bva)

av (cvb) from a proof of a v (b v c)

~(avd)v ((@avb)v(cvd))
~(bvec)v((@avb)v(cvd))
(avb)v (cvd) from a proof of (avd) v (bvc)
av (bv (cvd)) from a proof of a v ((bvc) vd)
av ((bvc)vd) from a proof of av (bv (c vd))
avVv (cvd) from proofs of av (bvc)and av (~b v d)
pv b from proofs of pvaandpv (~avb)
b from proofs of ~a and (a v b)
Pv b from proofs of Pv ~a and P v (a v

a=a

al '=blv (a2 '=b2 v (al '= a2 v bl =
b=afroma-=»>b

al=bvb-=
b '=a from al=bhb
~(pva=b)v(pvhb=a)
vb=a from a proof of Pva=»>
c froma=band b = ¢

a = ¢ from proofs of P v a =
= b from proofs of a != b nd
vc!=b from proofs of P v a != P

from al, a2, ..., an, ~al v (~a2 v ... Vv V=0) .|.4)
Elsth) =" f sl .j. sn)| from t1 = s, .. sn.
v
v

b)
b2))

—<II

(o gl ||

P
a
P
C
P
b
(

Pvb from P v al, ., Pvan, Pv (~al . v (~an v b)))
Poyv . (Ff ot kEn) = (f sI ...] sn)from P sl,
a from proofs of b v a and ~b v a

. P v tn

sSh

Some Important Rules

* Transitivity of Equal Builders
— Derivea = cfroma =bandb = c
— Derive Pva =cfromPva=bandPvb =c
* Equal by Arguments Builders
— Derive (ftl ... tn) = (fsl ... sn)
fromtl =51, ..., th = sn
— Derive Pv (ftl ... tn) = (fsl ... sn)
fromPvtl =51, ..., Pvitn = sn

SR, A Simple Rewriter

* | have a rewriter that can build some proofs

- sr : term * rule list — proof
Where a “rule” is a simple formula of the form lhs = rhs

— (sr x rules) creates a proof of x = X/, if any rules can
rewrite parts of x

* Basically unconditional inside-out rewriting with
proof output

- The equal-by-args and transitivity-of-equal builders
construct the proof

Some Example Rules

* These are provable using our builders and the
Lisp axioms

Gfenaly z) =2

(if tyz)=y

(if xyy) =y

(if x (1f x yw) z) = (if x y 2)

(if xy (if xy 2)) = (if x y 2)

(if (if xy z) pq) = (if x (if y p q) (if z p q))

* With these (and definitions of implies, not), sr
can prove the following is just t:

(IMPLIES (NOT (CONSP X))
(NOT (IF (CONSP X)
(IF (EQUAL A (CAR X))
T
(MEMBERP A (CDR X)))
NIL)))

Space and Time Considerations

* (implies (not (consp x)) (not (memberp ax))) =t
— About 475 KB, 6200 lines when printed with ~f

— About 2 second to check (excluding read time)
* (f(fxyz2)pg = (fx(fypqg (fzp q)
— About 225 KB, 3000 lines
* (booleanp t) =t
— About 22 KB, 280 lines
* (booleanp (equalxy)) =t
— About 1MB, 13000 lines

Current Status

* Currently capabilities

- Manipulate propositional formulas fairly easily
— Unconditional rewriting of terms

— Simple non-inductive theorems
* Short term goals

— Developing conditional rewriter
— Figure out induction rule, number representation
— Well defined extension principle for new definitions

— Actually begin proving lemmas on the way to proofp-
2-is-sound

Future Directions (Long Term)

* Prove proofp-2-is-sound using proofp

* Develop useful extensions and verify them, to
create more powerful proof checkers

* Perhaps consider ACL2 integration?

— Local events, missing datatypes, etc.
- Extending ACL2 to emit checkable proof objects?
— Allowing ACL2 to accept checked proof objects?

Thanks

* Useful Papers and Books

— Computer Aided Reasoning: An Approach, Chapter 6

— A Precise Description of the ACL2 Logic

- Structured Theory Development for a Mechanized Logic
— A Quick and Dirty Sketch of a Toy Logic

- Mathematical Logic, Shoenfield

— Metatheory and Reflection, John Harrison

