Designing a trustworthy, extensible proof checker for formal systems verification

Introduction

The author of theorem proving software must
strike a balance between competing goals.

Trustworthiness

Only a small amount of code should need to be
trusted, and there should be a clear logical story
explaining why this software works.

Capability

The software should be as automatic as possible.
It should provide a useful mixture of decision
procedures and reasoning strategies which can be
guided by the user. It should be able to follow
large proof steps on its own, so that proofs can be
kept current as a system's design changes.

Each new capability adds complexity. For
example, the source code for ACL2 is almost 8
megabytes, at times very sophisticated, and 1s
mostly unverified. How can it be trusted?

Worse, how can it be extended? If we are not
careful, our extensions might not be sound. If
being careful means understanding deeply how
our changes will impact the rest of the system,
then only experts can be trusted to add new
functionality.

Qur approach

We start with a simple proof checker that really
operates at the level of formal proofs. In other
words, we begin with a trustworthy core.

The core 1s written 1n its own logic, and can thus
reason about encoded formulas and proofs. We
can talk about the provability of formulas.

We write our extensions in the same logic. This

means the core can reason about extensions, and

we can prove that extensions are sound. The net
result: we need not trust these extensions.

Department of Computer Science, The University of Texas at Austin

Jared Davis

information.

The core proof checker

Terms, formulas, and proofs can be encoded as
data. resulting in proof objects. These are
simply tuples with a method, a conclusion, and
(possibly) some subproofs or additional

We write a function to check each type of proot
step. To check an entire proot, we simply check
each step throughout it.

Total size (estimate): ~1,500 lines of Lisp, versus
~200,000 lines for ACL2. That's much less to
trust, and we have clear correspondence
between the implementation and the logic.

Extensions

The core checker 1s too limited to use in practice,
so we write extensions to add capabilities such
as: tautology checking, substitution of equals for
equals, evaluation of arbitrary ground terms, term
rewriting, and so forth.

How can we trust these extensions? We write
them 1n our logic, so that the core proof checker
can reason about them. Then, we prove (using

the core checker) that each extension 1s sound.

Example. To verify our tautology checking
extension, we need to show that our tautology
checker accepts only provable formulas.

Computing Basis

Choose one or many

Qur Proof System

Verification
Project

Reflection

Finally, we add a rule of reflection. Loosely, this
rule allows us to conclude that F' is true by
showing that F 1s provable. This allows us to
make use of our extensions by running them on
concrete formulas.

Example. Suppose we can show (tautologyp F).
Then, by the soundness theorem above, we can
conclude (provablep F). Hence, by the reflection
rule, we can conclude F i1s true.

86 GCL J X86 SBCL J X86 CLISP J X86AIIegroJ PPC GCL J PPCOpenI\/ICLJ @

Common Extensions

(each verified with the previous level)

Core Proof Checker

(trusted; ~1,500 lines of Lisp)

Primitive Lisp Definitions

(e.g., len, memberp, ...) 8) 8 — %

. o g | 8 | B o
Recognizers for Syntactic Entities D = S = %
(terms, formulas, and proof objects) 6 % E % ol
e O
The Core Proof Checker g 2 = = g
(inference checkers, main proof checker) % g 8 |q_J <
= g O X

Command Loop

Custom Extensions
(written by the user, each verified by the previous level)

Tactic-like Scripting
(unverified functions for building proofs at the highest-verified level)

Proofs of Interest

(built using everything above)

Conclusions

Our approach leads to a proof checker which i1s
highly trustworthy and yet capable of dealing
with the complexity of software and hardware
designs.

Because the system 1s developed as a sequence of
extensions, it becomes clear what must be done
to further extend the system. Users should be
able to develop their own extensions without
author involvement, and can be confident in the
results.

Finally, because our logic 1s so similar to that of
ACL2, we have some hope of being able to
recreate existing, useful ACL2 libraries for our
tool, and some hope of being able to port ACL2
proofs to our system. This 1s attractive because
ACL2 1s already widely used for hardware and
software verification

For further information

Please contact jared @cs.utexas.edu, or see my homepage:
http://www.cs.utexas.edu/~jared/

Also, more information on ACL?2 can be found at:
http://www.cs.utexas.edu/~moore/acl2/

mailto:jared@cs.utexas.edu

