The Milawa Rewriter
and an ACL2 Proof of its Soundness

Jared Davis
The University of Texas at Austin
Department of Computer Sciences

jared@cs.utexas.edu ACL2 '07



The Milawa Rewriter

Assms

Equiv

> Trace of X - X'

Rewriter ——— > Updated Cache

———= > A-limited Flag

Assumptions
Limits Evaluation
Cache Conditional rules
Ancestors Ancestors checking
Control Backchain limits
Definitions

Rewrite Rules

No-Exec List
Control Flags
Current Theory

Free-variable matching
Syntaxp restrictions
Rewriter cache

Forcing



Soundness of the Rewriter

:

Alleged
Proof

Proofp

——— | Accept/Reject

Axioms

Theorems

Arity Table

Suppose

Everything i1s well-formed
All definitions are axioms
All rewrite rules are theorems
X rewrtites to X'

Then

assms — X = X' 1s provable



The Milawa Logic

Prop. Schema

Contraction

Expansion

Associativity

Cut

Instantiation

Induction

—“AVA

AVA
A

A
BVA

AV(BVQO)
(AVB)VC

AVB —~AVC

BvC

Alo

Reflexivity Axiom
X=X

Equality Axiom

X, =V, X TV, X, T X ), T,

Referential Transparency
X, Ty, = ..0oX =y — flx,, ..., x ) =/, .- yn)

Beta Reduction
(Ax,..x .p)t, ...t )=pllx—t, .., x—t]

Base Evaluation
e.g.,l+2=3

Lisp Axioms
e.g., consp(cons(x, y)) =t



Structure of the Proof

Trace of
D X=X

Assms

X > Rewriter

Equiv /=

Traces
Method
Assms
Lhs
Rhs
Equiv

Subtrace 1

Subtrace n

Trace
Compiler

D

3
Proof of
Assms -» X = X'

Example: transitivity traces

assms —|
assms —|

X=Y
Y = Z

lassms —|

X =7/



Kinds of Traces

Failure

lassms —| z =

If, false case
[assms —| xy iff false

[assms —| 21 = 2o

lassms —| if (z1,y1,21) = 22

If, true case
lassms —| xy iff true

|assms —| Y1 = ¥y

lassms —| if (x1,y1,21) = Yo

Not congruence
[assms —| x iff 2’

|assms —| not(x) = not(z)

Equiv by args
[assms —| ay = a

[assms —| a, = a,’

Transitivity
lassms —| z =y
lassms —| y = z

lassms —| z = z

Lambda equiv by args
[assms —| ay = ay'

[assms —| a, = a;,’

lassms —| (Axy...2n . ) ay...c

If, same case
lassms —| @ iff 2

T, ASSMS — Y = W

Beta reduction

g, A58MSs — 2 = W

lassms —| if (x1,y,2) = w

If, general case
lassms —| xy iff xo
To, ASSMS — Y1 = Yo

—Ta, ASSMS — Z] = Zn

lassms —| (Azy...2, . 3) a; ..

n = Bf|ey —ay, ..., Ty — Gy

Assumptions
(Justified by an assumption)

Ground evaluation
(Where [hs evaluates to rhs)

lassms —] if (21, y1,21) = if (T2, Y2, 22)

If-not normalization

lassms —| if (z, false, true) = not(z)

[assms —| f(ay, ..

'!ﬂn) = f{ﬂal’,..

* ﬂnl’)

[assms —] lhs = rhs |assms —| lhs = rhs

Forcing
(Must be justified later)

Rule application
(Justified by a rewrite rule)
[assms —| hypy iff true

' [assms —| lhs iff true
|assms —| hypy iff true

lassms —| lhs = rhs



Compiling Traces

Transitivity \
Step Compiler

Equiv by Args @

Step Compiler
Any Whole-Trace
Step Compiler Compiler

Evaluation

Step Compiler U

Application to “bootstrapping”



Shameless Plug

The paper 1s available on my web site

http:/ /www.cs.utexas.edu/jared

Defining provability Ancestors checking
T'he assumptions system Free-variable matching
T'he evaluator Syntactic restrictions
Rewrite traces Caching

The rewriter Forcing



Oh noes!

Q
-

#i]l[l not'use’ACL2!




