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The Milawa Rewriter
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Soundness of the Rewriter
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Suppose

Everything i1s well-formed
All definitions are axioms
All rewrite rules are theorems
X rewrtites to X'

Then

assms — X = X' 1s provable



The Milawa Logic
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Reflexivity Axiom
X=X

Equality Axiom
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Referential Transparency
X, Ty, = ..0oX =y — flx,, ..., x ) =/, .- yn)

Beta Reduction
(Ax,..x .p)t, ...t )=pllx—t, .., x—t]

Base Evaluation
e.g.,l+2=3

Lisp Axioms
e.g., consp(cons(x, y)) =t



Structure of the Proof
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Example: transitivity traces

assms —|
assms —|

X=Y
Y = Z

lassms —|

X =7/



Kinds of Traces

Failure

lassms —| z =

If, false case
[assms —| xy iff false

[assms —| 21 = 2o

lassms —| if (z1,y1,21) = 22

If, true case
lassms —| xy iff true

|assms —| Y1 = ¥y

lassms —| if (x1,y1,21) = Yo

Not congruence
[assms —| x iff 2’

|assms —| not(x) = not(z)

Equiv by args
[assms —| ay = a

[assms —| a, = a,’

Transitivity
lassms —| z =y
lassms —| y = z

lassms —| z = z

Lambda equiv by args
[assms —| ay = ay'

[assms —| a, = a;,’

lassms —| (Axy...2n . ) ay...c

If, same case
lassms —| @ iff 2

T, ASSMS — Y = W

Beta reduction

g, A58MSs — 2 = W

lassms —| if (x1,y,2) = w

If, general case
lassms —| xy iff xo
To, ASSMS — Y1 = Yo

—Ta, ASSMS — Z] = Zn

lassms —| (Azy...2, . 3) a; ..

n = Bf|ey —ay, ..., Ty — Gy

Assumptions
(Justified by an assumption)

Ground evaluation
(Where [hs evaluates to rhs)

lassms —] if (21, y1,21) = if (T2, Y2, 22)

If-not normalization

lassms —| if (z, false, true) = not(z)

[assms —| f(ay, ..

'!ﬂn) = f{ﬂal’,..

* ﬂnl’)

[assms —] lhs = rhs |assms —| lhs = rhs

Forcing
(Must be justified later)

Rule application
(Justified by a rewrite rule)
[assms —| hypy iff true

' [assms —| lhs iff true
|assms —| hypy iff true

lassms —| lhs = rhs



Compiling Traces
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Application to “bootstrapping”



Shameless Plug

The paper 1s available on my web site

http:/ /www.cs.utexas.edu/jared

Defining provability Ancestors checking
T'he assumptions system Free-variable matching
T'he evaluator Syntactic restrictions
Rewrite traces Caching

The rewriter Forcing
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